Is it distinct 2? (Are the Solutions to this Problem Distinct?)

The reciprocals of 4 positive integers add up to 19 20 \dfrac{19}{20} . Three of these integers are in the ratio 1 : 2 : 3 1:2:3 . What is the sum of the four integers?


For more problems like this, try answering this set .


The answer is 42.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let the 4 positive integers be a a , 2 a 2a , 3 a 3a and b b , then we have:

1 a + 1 2 a + 1 3 a + 1 b = 19 20 11 6 a + 1 b = 19 20 11 b + 6 a 6 a b = 19 20 110 b + 60 a = 57 a b 57 a b 60 a 110 b = 0 ( 3 a 110 19 ) ( 19 b 20 ) = 2200 19 ( 57 a 110 ) ( 19 b 20 ) = 2200 \begin{aligned} \frac 1a + \frac 1{2a} + \frac 1{3a} + \frac 1b & = \frac {19}{20} \\ \frac {11}{6a} + \frac 1b & = \frac {19}{20} \\ \frac {11b+6a}{6ab} & = \frac {19}{20} \\ 110b + 60a & = 57ab \\ 57ab - 60a - 110b & = 0 \\ \left(3a - \frac {110}{19}\right)(19b-20) & = \frac {2200}{19} \\ (57a-110)(19b-20) & = 2200 \end{aligned}

For the LHS to be even as the RHS, both a a and b b must be even. When a = 2 a=2 , we have b = 30 b=30 . Therefore, the four positive integers are 2, 4, 6 and 30 and their sum is 42 \boxed{42} .

Christian Daang
Apr 7, 2017

Let the numbers be x , 2 x , 3 x , y x \ , \ 2x \ , \ 3x \ , \ y

So, we are required to solve for 6 x + y 6x + y . Then,

1 x + 1 ( 2 x ) + 1 ( 3 x ) + 1 y = 19 20 11 ( 6 x ) + 1 y = 19 20 11 ( 6 x ) = ( 19 y 20 ) ( 20 y ) x = ( 10 11 y ) ( 3 ( 19 y 20 ) ) \displaystyle \begin{aligned} \dfrac{1}{x} + \dfrac{1}{(2x)} + \dfrac{1}{(3x)} + \dfrac{1}{y} & = \cfrac{19}{20} \\ \implies \dfrac{11}{(6x)} + \dfrac{1}{y} & = \dfrac{19}{20} \\ \dfrac{11}{(6x)} & = \dfrac{(19y - 20)}{(20y)} \\ \implies x & = \dfrac{(10\cdot11\cdot y)}{(3\cdot(19y-20))} \end{aligned}

As 10 11 y m o d 3 0 y m o d 3 0 10\cdot11\cdot y \mod 3 \equiv 0 \implies y \mod 3 \equiv 0 .

Let

y = 3 k x = ( 10 11 k ) ( 57 k 20 ) x = ( 10 k ) 57 k 11 20 11 \displaystyle \begin{aligned} y &= 3k \\ x &= \dfrac{(10*11*k)}{(57k - 20)} \\ \implies x &= \dfrac{(10k)}{\dfrac{57k}{11} - \dfrac{20}{11}} \end{aligned}

By using modulo,

( 57 k m o d 11 ) ( 20 m o d 11 ) 0 ( 2 k m o d 11 ) ( 20 m o d 11 ) 0 k = 10 \displaystyle \begin{aligned} (57k \mod 11) - (20 \mod 11) & \equiv 0 \\ (2k \mod 11) - (20 \mod 11) & \equiv 0 \\ \implies k & = 10 \end{aligned}

So, y = 30 x = 2 y = 30 \implies x = 2

We need to find 6 x + y ( 6 2 ) + 30 = 42 6x+y \implies (6\cdot2) + 30 = \boxed{42}

Oh this is an unusual approach. I haven't seen this before. Thanks for sharing!

Pi Han Goh - 4 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...