Is it easier to simplify it?

Algebra Level 3

( x 2 3 x + 2 ) ( x 2 4 x + 3 ) ( x 2 5 x + 4 ) ( x 2 6 x + 5 ) ( x 2 7 x + 6 ) ( x 2 8 x + 7 ) ( x 2 x 2 ) ( x 2 2 x 3 ) ( x 2 3 x 4 ) ( x 2 4 x 5 ) ( x 2 5 x 6 ) ( x 2 6 x 7 ) \dfrac{(x^2-3x+2)(x^2-4x+3)(x^2-5x+4)(x^2-6x+5)(x^2-7x+6)(x^2-8x+7)}{(x^2-x-2)(x^2-2x-3)(x^2-3x-4)(x^2-4x-5)(x^2-5x-6)(x^2-6x-7)}

Find the value of this expression when x = 3 x=-3 .


The answer is 64.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Hung Woei Neoh
Jul 4, 2016

Relevant wiki: Multiplying and Dividing Monomials

( x 2 3 x + 2 ) ( x 2 4 x + 3 ) ( x 2 5 x + 4 ) ( x 2 6 x + 5 ) ( x 2 7 x + 6 ) ( x 2 8 x + 7 ) ( x 2 x 2 ) ( x 2 2 x 3 ) ( x 2 3 x 4 ) ( x 2 4 x 5 ) ( x 2 5 x 6 ) ( x 2 6 x 7 ) = ( x 2 ) ( x 1 ) ( x 3 ) ( x 1 ) ( x 4 ) ( x 1 ) ( x 5 ) ( x 1 ) ( x 6 ) ( x 1 ) ( x 7 ) ( x 1 ) ( x 2 ) ( x + 1 ) ( x 3 ) ( x + 1 ) ( x 4 ) ( x + 1 ) ( x 5 ) ( x + 1 ) ( x 6 ) ( x + 1 ) ( x 7 ) ( x + 1 ) = ( x 1 ) 6 ( x + 1 ) 6 \dfrac{(x^2-3x+2)(x^2-4x+3)(x^2-5x+4)(x^2-6x+5)(x^2-7x+6)(x^2-8x+7)}{(x^2-x-2)(x^2-2x-3)(x^2-3x-4)(x^2-4x-5)(x^2-5x-6)(x^2-6x-7)}\\ =\dfrac{\color{#3D99F6}{\cancel{\color{#333333}{(x-2)}}}(x-1)\color{#D61F06}{\cancel{\color{#333333}{(x-3)}}}(x-1)\color{#EC7300}{\cancel{\color{#333333}{(x-4)}}}(x-1)\color{magenta}{\cancel{\color{#333333}{(x-5)}}}(x-1)\color{#20A900}{\cancel{\color{#333333}{(x-6)}}}(x-1)\color{#69047E}{\cancel{\color{#333333}{(x-7)}}}(x-1)}{\color{#3D99F6}{\cancel{\color{#333333}{(x-2)}}}(x+1)\color{#D61F06}{\cancel{\color{#333333}{(x-3)}}}(x+1)\color{#EC7300}{\cancel{\color{#333333}{(x-4)}}}(x+1)\color{magenta}{\cancel{\color{#333333}{(x-5)}}}(x+1)\color{#20A900}{\cancel{\color{#333333}{(x-6)}}}(x+1)\color{#69047E}{\cancel{\color{#333333}{(x-7)}}}(x+1)}\\ =\dfrac{(x-1)^6}{(x+1)^6}

Substitute x = 3 x=-3 into the expression:

( 3 1 ) 6 ( 3 + 1 ) 6 = ( 4 ) 6 ( 2 ) 6 = 2 12 2 6 = 2 6 = 64 \dfrac{(-3-1)^6}{(-3+1)^6}\\ =\dfrac{(-4)^6}{(-2)^6}\\ =\dfrac{2^{12}}{2^6}\\ =2^6\\ =\boxed{64}

Lol!! Writing color latex once in a non-nlack colour for the cancek latex and then switching to black color is a hilarious job. (+1) for taking up the hard work!!!

Ashish Menon - 4 years, 11 months ago

Log in to reply

Haha thanks. It looks neater this way, but the number of braces! Though I'd say it's good training for me, since I'm pursuing a computer science degree.

You should see the number of colors I used here (Do try the question first)

Hung Woei Neoh - 4 years, 11 months ago

Log in to reply

Kk i will see it tmrw.

Ashish Menon - 4 years, 11 months ago

@Hung Woei Neoh Wow!!! Did you notice that coincidentally, only 64% of people got the question correct!!!

Aaghaz Mahajan - 2 years, 8 months ago

To be less specific, let's consider these expressions : N ( x , n ) = x 2 ( n + 1 ) x + n N(x,n)=x^{ 2 }-(n+1)x+n and D ( x , n ) = x 2 ( n 1 ) x n D(x,n)=x^{ 2 }-(n-1)x-n

We can easily compute that : N ( x , n ) = ( x 1 ) ( x n ) N(x,n)=(x-1)(x-n) and D ( x , n ) = ( x + 1 ) ( x n ) D(x,n)=(x+1)(x-n)

Therefore, N ( x , n ) D ( x , n ) = x 1 x + 1 \frac { N(x,n) }{ D(x,n) } =\frac { x-1 }{ x+1 }

The first expression can be rewritten as : n = 2 7 N ( x , n ) D ( x , n ) = ( x 1 x + 1 ) 6 \prod _{ n=2 }^{ 7 }{ \frac { N(x,n) }{ D(x,n) } } ={ \left( \frac { x-1 }{ x+1 } \right) }^{ 6 }

To answer the very first question, yes it is easier to simplify it :)

Substitute x = 3 x = -3 then you get :

n = 2 7 N ( 3 , n ) D ( 3 , n ) = ( 4 2 ) 6 = 2 6 = 64 \prod _{ n=2 }^{ 7 }{ \frac { N(-3,n) }{ D(-3,n) } } ={ \left( \frac { -4 }{ -2 } \right) }^{ 6 } = {2}^{6}=64

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...