Is it even related to the Gamma Function?

Calculus Level 5

Let f ( z , s ) f(z, s) be an analytic function of z z defined for ( z ) > 0 \Re (z) >0 , and by the summation formula defined for 0 < x < 1 0<x<1 and s > 0 s > 0 as - f ( x , s ) = n = 0 ( 1 ) n x n + s n + s \large f(x,s) = \sum_{n=0}^\infty \frac{ (-1)^nx^{n+s}}{n+s} Using analytic continuation and extending the domain of x x to all positive real numbers in x f ( x , s ) \dfrac{\partial}{\partial x} f(x,s) , if y = 0 x f ( x , 1 6 ) d x y = \displaystyle \int_0^\infty \frac{\partial}{\partial x}f\left(x,\frac16\right) dx , find cos ( 3 y 2 ) \cos\left(\dfrac{3y}{2}\right) . Give your answer to two decimal places

Relevant wiki: Gamma function


The answer is -1.00.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jul 21, 2017

f ( x , s ) = n = 0 ( 1 ) n x n + s n + s x f ( x ) = n = 0 ( 1 ) n x n + s 1 = x s 1 n = 0 ( 1 ) n x n + s = x s ( 1 x 1 1 + x ) = x s x ( 1 + x ) \begin{aligned} f(x,s) & = \sum_{n=0}^\infty \frac {(-1)^nx^{n+s}}{n+s} \\ \frac \partial {\partial x} f(x) & = \sum_{n=0}^\infty (-1)^nx^{n+s-1} = x^{s-1} - \sum_{n=0}^\infty (-1)^nx^{n+s} = x^s \left(\frac 1x - \frac 1{1+x}\right) = \frac {x^s}{x(1+x)} \end{aligned}

Therefore,

y = 0 x f ( x ) d x = 0 x 1 6 x ( 1 + x ) d x for s = 1 6 = 0 x 1 6 1 ( 1 + x ) 1 6 + 5 6 d x = B ( 1 6 , 5 6 ) B ( m , n ) is beta function. = Γ ( 1 6 ) Γ ( 5 6 ) Γ ( 1 6 + 5 6 ) Γ ( z ) is gamma function. = Γ ( 1 6 ) Γ ( 1 1 6 ) 0 ! = π sin π 6 = 2 π \begin{aligned} y & = \int_0^\infty \frac \partial {\partial x} f(x) \ dx \\ & = \int_0^\infty \frac {x^{\color{#3D99F6}\frac 16}}{x(1+x)} \ dx & \small \color{#3D99F6} \text{for }s = \frac 16 \\ & = \int_0^\infty \frac {x^{{\color{#3D99F6}\frac 16}-1}}{(1+x)^{\color{#3D99F6}\frac 16 + \frac 56}} \ dx \\ & = B \left(\frac 16, \frac 56 \right) & \small \color{#3D99F6} B(m,n) \text{ is beta function.} \\ & = \frac {\Gamma \left(\frac 16 \right)\Gamma \left(\frac 56 \right)}{\Gamma \left(\frac 16 + \frac 56 \right)} & \small \color{#3D99F6} \Gamma (z) \text{ is gamma function.} \\ & = \frac {\Gamma \left(\frac 16 \right)\Gamma \left(1-\frac 16 \right)}{0!} \\ & = \frac {\pi}{\sin \frac \pi 6} = 2 \pi \end{aligned}

cos ( 3 y 2 ) = cos 3 π = 1 \implies \cos \left(\dfrac {3y}2 \right) = \cos 3\pi = \boxed{-1}


References:

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...