An algebra problem by swastik p (7)

Algebra Level 2

Is the inequality TRUE ?

If a , b , c , d a,b,c,d are positive numbers then ( a + b + c + d ) ( 1 a + 1 b + 1 c + 1 d ) 16 \left( a+b+c+d \right)\left( \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d} \right)\ge 16


This is a problem from the set Problems for everyone!!!

Can't be determined Yes No

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

S P
May 25, 2018

Let's focus on ( a + b + c + d ) ? (a+b+c+d)\ge \text{?}

By AM-GM inequality we have:

a + b + c + d 4 a b c d 4 \dfrac{a+b+c+d}{4}\ge \sqrt[4]{abcd}

a + b + c + d 4 a b c d 4 (i) \therefore a+b+c+d\ge 4\sqrt[4]{abcd} ~-~ \text{(i)}

Now we focus on ( 1 a + 1 b + 1 c + 1 d ) ? \left( \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d} \right)\ge \text{?}

By AM-GM inequality we have:

( 1 a + 1 b + 1 c + 1 d ) 4 1 a 1 b 1 c 1 d 4 \dfrac{\left( \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d} \right)}{4}\ge \sqrt[4]{ \dfrac{1}{a}\cdot \dfrac{1}{b}\cdot \dfrac{1}{c}\cdot \dfrac{1}{d}}

1 a + 1 b + 1 c + 1 d 4 1 a b c d 4 (ii) \therefore \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d} \ge 4\sqrt[4]{\dfrac{1}{abcd}}~-~ \text{(ii)}

By (i) × (ii) \text{(i)}\times \text{(ii)} we have

( a + b + c + d ) ( 1 a + 1 b + 1 c + 1 d ) 4 a b c d 4 × 4 1 a b c d 4 ( a + b + c + d ) ( 1 a + 1 b + 1 c + 1 d ) 16 a b c d a b c d 4 ( a + b + c + d ) ( 1 a + 1 b + 1 c + 1 d ) 16 \begin{aligned}\\& (a+b+c+d)\left( \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d} \right)\ge 4\sqrt[4]{abcd}\times 4\sqrt[4]{\dfrac{1}{abcd}} \\& \implies (a+b+c+d)\left( \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d} \right)\ge 16\sqrt[4]{\dfrac{abcd}{abcd}} \\& \implies \boxed{~~ (a+b+c+d)\left( \dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d} \right)\ge 16 ~~}\end{aligned}

Hence, the inequality is TRUE

Louis Ullman
Jul 15, 2018

The Cauchy-Schwarz inequality tells us that ( x 1 2 + . . . + x n 2 ) ( y 1 2 + . . . + y n 2 ) ( x 1 y 1 + . . . + x n y n ) 2 ({ x }_{ 1 }^{ 2 }+...+{ x }_{ n }^{ 2 })({ y }_{ 1 }^{ 2 }+...+{ y }_{ n }^{ 2 })\ge { ({ x }_{ 1 }{ y }_{ 1 }+...+{ x }_{ n }{ y }_{ n }) }^{ 2 } .

Plugging in x 1 = a { x }_{ 1 }=\sqrt { a } , x 2 = b { x }_{ 2 }=\sqrt { b } , x 3 = c { x }_{ 3 }=\sqrt { c } , x n = x 4 = d { x }_{ n }={ x }_{ 4 }=\sqrt { d } , y 1 = 1 a { y }_{ 1 }=\frac { 1 }{ \sqrt { a } } , y 2 = 1 b { y }_{ 2 }=\frac { 1 }{ \sqrt { b } } , y 3 = 1 c { y }_{ 3 }=\frac { 1 }{ \sqrt { c } } , and y n = y 4 = 1 d { y }_{ n }={ y }_{ 4 }=\frac { 1 }{ \sqrt { d } } , we get that ( a 2 + b 2 + c 2 + d 2 ) ( 1 a 2 + 1 b 2 + 1 c 2 + 1 d 2 ) ( a 1 a + b 1 b + c 1 c + d 1 d ) 2 ({ \sqrt { a } }^{ 2 }+{ \sqrt { b } }^{ 2 }+{ \sqrt { c } }^{ 2 }+{ \sqrt { d } }^{ 2 })(\frac { 1 }{ { \sqrt { a } }^{ 2 } } +\frac { 1 }{ { \sqrt { b } }^{ 2 } } +\frac { 1 }{ { \sqrt { c } }^{ 2 } } +\frac { 1 }{ { \sqrt { d } }^{ 2 } } )\ge { (\sqrt { a } \cdot \frac { 1 }{ \sqrt { a } } +\sqrt { b } \cdot \frac { 1 }{ \sqrt { b } } +\sqrt { c } \cdot \frac { 1 }{ \sqrt { c } } +\sqrt { d } \cdot \frac { 1 }{ \sqrt { d } } ) }^{ 2 } , which simplifies to ( a + b + c + d ) ( 1 a + 1 b + 1 c + 1 d ) 16 (a+b+c+d)(\frac { 1 }{ a } +\frac { 1 }{ b } +\frac { 1 }{ c } +\frac { 1 }{ d } )\ge 16 .

This new equality is the same one used in the problem, which implies that, yes , the inequality holds true for all a a , b b , c c , and d d .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...