Is It Improper Integral?

Calculus Level 3

0 π 2 arctan ( 2 tan x ) tan x d x = π ln A B \large\int_0^{\frac\pi 2}\frac{\arctan(2\tan x)}{\tan x}\ dx=\frac{\pi\ln A}B where A , B A,B are positive integers and A < 9 A<9 . Find the value of A + B A+B .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Brian Lie
Apr 18, 2018

Relevant wiki: Differentiation Under the Integral Sign

Let F ( a ) = 0 π 2 arctan ( a tan x ) tan x d x , a 0 F(a)=\int_0^{\frac\pi 2}\frac{\arctan(a\tan x)}{\tan x}\ dx,a\ge 0 we have

F ( a ) = 0 π 2 a arctan ( a tan x ) tan x d x Using differentiation under the integral sign = 0 π 2 d x 1 + a 2 tan 2 x Let t = tan x d x = d t 1 + t 2 = 0 d t ( 1 + a 2 t 2 ) ( 1 + t 2 ) = 1 a 2 1 0 ( 1 t 2 + 1 a 2 1 t 2 + 1 ) d t = 1 a 2 1 ( a arctan ( a x ) arctan x ) 0 = π 2 ( a + 1 ) . \begin{aligned} F'(a)&=\int_0^{\frac\pi 2}\frac\partial{\partial a}\frac{\arctan(a\tan x)}{\tan x}\ dx&\small\color{#3D99F6}\text{Using differentiation under the integral sign} \\&=\int_0^{\frac\pi 2}\frac{dx}{1+a^2\tan^2x}&\small\color{#3D99F6}\text{Let }t=\tan x\Rightarrow dx=\frac {dt}{1+t^2} \\&=\int_0^\infty\frac{dt}{(1+a^2t^2)(1+t^2)} \\&=\frac 1{a^2-1}\int_0^\infty\left(\frac 1{t^2+\frac 1{a^2}}-\frac 1{t^2+1}\right)\ dt \\&=\frac 1{a^2-1}(a\arctan(ax)-\arctan x)\Big|_0^\infty \\&=\frac\pi{2(a+1)}. \end{aligned}

Hence F ( a ) = F ( 0 ) + 0 a π 2 ( 1 + x ) d x = π ln ( 1 + a ) 2 . F(a)=F(0)+\int_0^a\frac\pi{2(1+x)}\ dx=\frac{\pi\ln(1+a)}2. Set a = 2 a=2 , we get F ( 2 ) = 0 π 2 arctan ( 2 tan x ) tan x d x = π ln 3 2 , F(2)=\int_0^{\frac\pi 2}\frac{\arctan(2\tan x)}{\tan x}\ dx=\frac{\pi\ln 3}2, making the answer 3 + 2 = 5 3+2=\boxed 5 .

Absolutely Amazing question

A Former Brilliant Member - 3 years, 1 month ago

Log in to reply

I am glad that you like it.

Brian Lie - 3 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...