Is it long?

Geometry Level 5

Consider A B C \triangle ABC having sides A B = A C = 14 cm AB=AC=14 \text{ cm} and B C = 20 cm BC=20 \text{ cm} .

Let I I be the incentre of A B C \triangle ABC and G G be the centroid of the triangle formed by joining the points at which the sides A B , B C AB,BC and C A CA are tangent to the incircle of A B C \triangle ABC .

If I G = a b c cm IG=\dfrac{a\sqrt{b}}{c}\text{ cm} where gcd ( a , c ) = 1 \gcd (a,c)=1 and b b is square-free, then submit your answer as a + b + c a+b+c .


The answer is 32.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Shaun Leong
Jan 16, 2016

A solution using similarity and Pythagorean Theorem:

Let the midpoint of BC be M. Let the two other points of tangency of the incircle be J and L. Let K be the midpoint of the segment JL.

Note that G,I and M all lie on the perpendicular bisector of A B C \triangle ABC , so they are collinear.

Let the inradius be r. 1 2 r ( 14 + 14 + 20 ) = A r e a = 24 10 10 4 \frac {1}{2}r(14+14+20)=Area=\sqrt{24*10*10*4} (using Heron's formula)

Hence r = 5 3 6 r=\frac {5}{3}\sqrt{6} .

It is known that the centroid divides a median into 2 segments of ratio 1 : 2 1:2 .

A M = 1 4 2 1 0 2 = 4 6 AM=\sqrt{14^2-10^2}=4\sqrt{6}

Also, A B C A J L \triangle ABC \sim \triangle AJL and J B = B M = 10 JB=BM=10 , so J K = 4 14 1 4 4 1 0 2 = 8 7 6 JK= \frac {4}{14}\sqrt{14^4-10^2}=\frac {8}{7}\sqrt{6}

Thus G M = 2 3 ( 4 6 8 7 6 ) = 40 21 6 GM=\frac {2}{3}*(4\sqrt{6}-\frac {8}{7}\sqrt{6})=\frac {40}{21}\sqrt{6}

I G = G M I M = 40 21 6 5 3 6 = 5 6 21 \Rightarrow IG=GM-IM=\frac {40}{21}\sqrt{6}-\frac {5}{3}\sqrt{6}=\frac {5\sqrt{6}}{21} a + b + c = 5 + 6 + 21 = 32 \Rightarrow a+b+c=5+6+21=\boxed{32}

Ahmad Saad
Jan 16, 2016

Let M be the midpoint of BC. A M b y P y t h a g o r a s i s 4 6 . M i s 0 n e v e r t e x a n d l e t T 1 , T 2 b e o t h e r t w o v e r t i c e s o f t h e Δ f o r m e d b y t a n g e n c y p o i n t s . I n r a d i u s , r = 1 2 20 4 6 1 2 ( 14 + 14 + 20 ) = 5 3 6 . S i n A 2 = 5 7 . T 1 G = + T 2 G = r S i n A 2 = 5 7 r . Let I be the origin of the rectangular coordinate system with AM along X=0. I ( 0 , 0 ) , M ( 0 , r ) , T 1 ( p , 5 7 r ) , T 2 ( + p , 5 7 r ) , G ( 0 3 , r ( 1 + 5 7 + 5 7 ) 3 ) = ( 0 , 5 6 21 ) . I G = 5 6 21 = a b c . a + b + c = 32 \text{ Let M be the midpoint of BC.} \\ \therefore ~ AM ~ by ~ Pythagoras~ is~ 4\sqrt6. ~~~ M~ is ~0ne~ vertex ~ and ~ let ~ T_1, ~ T_2\\ be~other ~ two~ vertices ~ of~ the~ \Delta ~formed ~ by ~tangency~ points.\\ Inradius,~ r=\dfrac{\frac 1 2 *20*4\sqrt6}{\frac 1 2 *(14+14+20)}=\dfrac 5 3 \sqrt6.\\ Sin\dfrac A 2=\dfrac 5 7 . ~~~~~~~\color{#3D99F6}{-T_1G=+T_2G= r*Sin\dfrac A 2=\dfrac 5 7 *r}.\\ \text{Let I be the origin of the rectangular coordinate system with AM along X=0.}\\ \therefore I(0,0) , ~~M(0,-r), ~~ T_1(-p,\dfrac 5 7 *r), ~T_2(+p,\dfrac 5 7 *r), ~\\ \therefore ~G \left( \dfrac 0 3,\dfrac{r(-1+\dfrac 5 7+\dfrac 5 7 )} 3 \right )=\left( 0 ,\dfrac {5\sqrt6}{21} \right) .\\ \therefore ~IG=\dfrac {5\sqrt6}{21}=\dfrac {a\sqrt b}c.\\ \therefore ~~a+b+c=\Large ~~~~~\color{#D61F06}{32}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...