Is it partial?

Calculus Level 3

n n + 1 \displaystyle\int_n^{n+1} f ( x ) f(x) d x dx = n 2 + n n^2+n

For all n n belongs to Integers then evaluate

\quad 3 3 \displaystyle\int_{-3}^3 f ( x ) f(x) d x dx


The answer is 16.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

3 3 f ( x ) d x = 3 2 f ( x ) d x + 2 1 f ( x ) d x + 1 0 f ( x ) d x + 0 1 f ( x ) d x + 1 2 f ( x ) d x + 2 3 f ( x ) d x = ( 3 ) 2 3 + ( 2 ) 2 2 + ( 1 ) 2 1 + 0 + 0 + 1 2 + 1 + 2 2 + 2 = 16 \displaystyle \int_{-3}^{-3} f(x)dx \\ =\int_{-3}^{-2} f(x)dx +\int_{-2}^{-1} f(x)dx +\int_{-1}^{0} f(x)dx \\+ \int_{0}^{1} f(x)dx +\int_{1}^{2} f(x)dx + \int_{2}^{3} f(x)dx \\=(-3)^2-3~~+~~(-2)^2-2~~+(-1)^2-1~~+0+0~~+1^2+1~~+2^2+2\\ =\boxed{ 16 }

Correct !!!!

Parth Lohomi - 6 years, 5 months ago

or could we find f(x) using lebinitz's rule

Ilaya S - 6 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...