Is it perfect square?

11....11 2018 55....55 2017 6 is a perfect square. \LARGE \underbrace{11....11}_{2018}\underbrace{55....55}_{2017}6\text{ is a perfect square.}

True or False ? \large {\color{#20A900}\text{True}}\text{ or }{\color{#D61F06}\text{False}}?

False True

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Yes \boxed{\text{Yes}} : ( 33 33 2017 4 ) 2 = 11 11 2018 55 55 2017 6. \large \left(\underbrace{33\dots33}_{2017}4\right)^2 = \underbrace{11\dots11}_{2018}\underbrace{55\dots55}_{2017}6.


A useful fact is: 11 11 n = i = 0 n 1 1 0 i = 1 0 n 1 9 . \underbrace{11\dots11}_n = \sum_{i=0}^{n-1} 10^i = \frac{10^n - 1}9.

The given number may be written as 11 11 4036 + 4 11 11 2018 + 1 = 1 0 4036 1 9 + 4 1 0 2018 1 9 + 1 = 1 0 4036 9 + 4 1 0 2018 9 + 4 9 = ( 1 0 2018 3 + 2 3 ) 2 = ( 1 + 9 11 11 2018 3 + 2 3 ) 2 = ( 1 + 33 33 2018 ) 2 = ( 33 33 2017 4 ) 2 . \underbrace{11\dots11}_{4036} + 4\cdot \underbrace{11\dots11}_{2018} + 1 \\ = \frac{10^{4036} - 1} 9 + 4\cdot \frac{10^{2018} - 1} 9 + 1 \\ = \frac{10^{4036}} 9 + \frac{4 \cdot 10^{2018}} 9 + \frac 4 9 \\ = \left(\frac{10^{2018}} 3 + \frac 2 3\right)^2 \\ = \left(\frac{1 + 9\cdot \overbrace{11\dots11}^{2018}}3 + \frac 2 3\right)^2 \\ = \left(1 + \underbrace{33\dots33}_{2018}\right)^2 \\ = \left(\underbrace{33\dots33}_{2017}4\right)^2.


Another approach, less thorough but more intuitive, is to observe: 3 4 2 = 1156 33 4 2 = 111556 333 4 2 = 11115556 3333 4 2 = 1111155556 \begin{array}{rl} 34^2 & = 1156 \\ 334^2 & = 111556 \\ 3334^2 & = 11115556 \\ 33334^2 & = 1111155556 \\ & \vdots \end{array} After going through a handful of examples, most people are willing to believe the pattern continues indefinitely!

We can prove by induction that it continues indeed. If 33 33 n 4 2 = 11 11 n + 1 55 55 n 6 \underbrace{33\dots33}_{n}4^2 = \underbrace{11\dots11}_{n+1}\underbrace{55\dots55}_n6 , then 33 33 n + 1 4 2 = ( 3 1 0 n + 1 + 33 33 n 4 ) 2 = ( 3 1 0 n + 1 ) 2 + 2 3 1 0 n + 1 33 33 n 4 + ( 33 33 n 4 ) 2 = 9 1 0 2 n + 2 + 6 33 33 n 4 1 0 n + 1 + 11 11 n + 1 55 55 n 6 = 9 00 00 2 n + 2 + 2 00 00 n 4 00 00 n + 1 + 11 11 n + 1 55 55 n 6 = 11 11 11 n 5 55 55 n 6 = 11 11 n + 2 5 55 55 n + 1 6. \underbrace{33\dots33}_{n+1}4^2 = (3\cdot 10^{n+1} + \underbrace{33\dots33}_n4)^2 \\ = (3\cdot 10^{n+1})^2 + 2\cdot 3\cdot 10^{n+1}\cdot \underbrace{33\dots33}_n4 + (\underbrace{33\dots33}_n4)^2 \\ = 9\cdot 10^{2n+2} + 6\cdot \underbrace{33\dots33}_n4\cdot 10^{n+1} + \underbrace{11\dots11}_{n+1}\underbrace{55\dots55}_n6 \\ = 9\underbrace{00\dots00}_{2n+2} + 2\underbrace{00\dots00}_n4\underbrace{00\dots00}_{n+1} + \underbrace{11\dots11}_{n+1}\underbrace{55\dots55}_n6 \\ = 11\underbrace{11\dots11}_n5\underbrace{55\dots55}_n6 \\ = \underbrace{11\dots11}_{n+2}5\underbrace{55\dots55}_{n+1}6.

I'm afraid you wrote 1 + 9.111111 (2018) times wrong. It should be 2017 (Correct me if I'm wrong)

Priti Gupta - 3 years, 4 months ago

Log in to reply

You are wrong :) Note

1 0 2 = 1 + 9 11 , 1 0 3 = 1 + 9 111 , 1 0 6 = 1 + 9 1111 , 1 0 15 = 1 + 9 111 111 111 111 111 15 times , 1 0 2018 = 1 + 9 111 111 2018 times . 10^2 = 1 + 9\cdot 11, \\ 10^3 = 1 + 9\cdot 111, \\ 10^6 = 1 + 9\cdot 1111, \\ 10^{15} = 1 + 9\cdot \underbrace{111\,111\,111\,111\,111}_{15\ \text{times}}, \\ 10^{2018} = 1 + 9\cdot \underbrace{111\dots 111}_{2018\ \text{times}}.

Arjen Vreugdenhil - 3 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...