Is it possible that?

Calculus Level 4

Are there any functions f : R R f: \mathbb{R} \longrightarrow \mathbb{R} satisfying the following properties ?

f • \ f is C 1 ( x , y ) R 2 , f ( x + y ) f ( x ) f ( y ) f ( 0 ) = 1 ( x , y ) R 2 , f ( x + y ) < f ( x ) f ( y ) C^1 \\ • \ \forall (x,y)\in \mathbb{R}^2, \ f(x+y)\leq f(x)f(y) \\ • \ f(0)=1\\ • \ \exists (x,y)\in\mathbb{R}^2, \ f(x+y)<f(x)f(y)

The exponential functions f : x R e α x f: x\in\mathbb{R} \longmapsto e^{\alpha x} where α R \alpha \in \mathbb{R} satisfy the three first properties but not the fourth. Try to find a function that satisfies the four properties or to prove that no such function exists.

No Yes

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Théo Leblanc
Aug 15, 2019

I will try to find all functions satisfying the three first properties and show that there are exactly the exponential functions. Therefore we will conclude that no function satisfies the four properties.

Let: ( 1 ) f is C 1 ( 2 ) ( x , y ) R 2 , f ( x + y ) f ( x ) f ( y ) ( 3 ) f ( 0 ) = 1 \\ (1) \ f \ \text{is} \ C^1\\ (2) \ \forall(x,y)\in\mathbb{R}^2,\ f(x+y)\leq f(x)f(y)\\ (3) \ f(0)=1

Let f : R R f:\mathbb{R}\longrightarrow\mathbb{R} satisfying ( 1 ) , ( 2 ) , ( 3 ) (1),\ (2), \ (3) .

Let x R x\in\mathbb{R} . Then by ( 2 ) (2) , for any h 0 h\neq 0 we have:

f ( x + h ) f ( x ) h f ( x ) f ( h ) f ( x ) h = f ( x ) f ( h ) 1 h = f ( x ) f ( h ) f ( 0 ) h \begin{aligned} \dfrac{f(x+h)-f(x)}{h} & \leq \dfrac{f(x)f(h)-f(x)}{h}\\ & =f(x)\dfrac{f(h)-1}{h}\\ & =f(x)\dfrac{f(h)-f(0)}{h} \end{aligned}

By letting h 0 h\to 0 , because f f is C 1 C^1 , we get:

f ( x ) f ( x ) f ( 0 ) f'(x)\leq f(x)f'(0)

Similarly, for any h R h\in\mathbb{R}^* ,

f ( x ) f ( x h ) h f ( x ) f ( x ) f ( h ) h = f ( x ) f ( 0 ) f ( h ) h \begin{aligned} \dfrac{f(x)-f(x-h)}{h} & \geq \dfrac{f(x)-f(x)f(-h)}{h}\\ & = f(x)\dfrac{f(0)-f(-h)}{h} \end{aligned}

Letting h 0 h\to 0 :

f ( x ) f ( x ) f ( 0 ) f'(x)\geq f(x)f'(0)

Therefore, x R , f ( x ) = f ( 0 ) f ( x ) \forall x\in\mathbb{R}, \ f'(x)=f'(0)f(x) .

So (by solving the ODE and by ( 3 ) (3) ) there exists α R , such that f = exp ( α i d R ) \alpha\in\mathbb{R}, \ \text{such that} \ f=\exp(\alpha \ id_\mathbb{R}) . Note: α = f ( 0 ) \alpha=f'(0)

Verification: for any α R , x R e α x \alpha\in\mathbb{R}, \ x\in\mathbb{R}\mapsto e^{\alpha x} satisfies the tree properties. \square

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...