Is it Real?

Algebra Level 3

If f(z)= i^i , then f(z) is

Purely Real Complex having both real and imaginary parts (Non-zero) Purely Imaginary Not a valid function

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Vishwa Brungi
Mar 4, 2016

i^i=0.20787957635

The proper closed for this can be achieved by taking the base i i as e i π 2 e^{\frac{i \pi}{2}} (Euler's form) and then we have

( e i π 2 ) i = e π 2 or 1 e π 2 = 0.20787957635... {\left( e^{\frac{i \pi}{2}} \right)}^i = e^{\frac{-\pi}{2}} \text{ or } \dfrac{1}{e^{\frac{\pi}{2}}} = 0.20787957635...

Tapas Mazumdar - 4 years, 2 months ago
Louis Ullman
May 4, 2018

Euler's identity: e x i = cos ( x ) + i sin ( x ) { e }^{ xi }=\cos { (x) } +i\sin { (x) } e π 2 i = cos ( π 2 ) + i sin ( π 2 ) { e }^{ \frac { \pi }{ 2 } i }=\cos { (\frac { \pi }{ 2 } ) } +i\sin { (\frac { \pi }{ 2 } ) } e π 2 i = i { e }^{ \frac { \pi }{ 2 } i }=i ( e π 2 i ) i = i i { ({ e }^{ \frac { \pi }{ 2 } i }) }^{ i }={ i }^{ i } e π 2 = i i { { e }^{ -\frac { \pi }{ 2 } } }={ i }^{ i } The left side of the equation is purely real; therefore, i i { i }^{ i } is purely real.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...