Do you really wanna ask for even?

Geometry Level 3

f ( x ) = ( a 2 5 a + 4 ) x 3 ( 6 { a } 2 5 { a } + 1 ) x ( tan ( x ) ) sgn ( x ) f(x)=\left( \lfloor a \rfloor^2-5\lfloor a \rfloor +4 \right)x^3-\left( 6\{a\}^2-5\{a\}+1 \right)x -(\tan (x)) \text{sgn}(x)

Provided that f ( x ) f(x) be an even function for all x R x \in \mathbb{R} . If sum of all possible values of a a is P Q \dfrac{P}{Q} for coprime positive integers P , Q P,Q , then find the value of ( P + Q ) (P+Q) .

Details And Assumptions :

  • . . \lfloor ..\rfloor is floor function or greatest integer function.

  • { . . } \{ .. \} is fractional part function.

  • sgn ( x ) \text{sgn}(x) is signum function defined as : sgn ( x ) = { 1 , x > 0 0 , x = 0 1 , x < 0 \text{sgn}(x)=\begin{cases} 1 \quad , x>0 \\ 0 \quad , x=0 \\ -1 \quad , x<0 \end{cases} .


The answer is 38.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Prashant Kr
Apr 6, 2015

f(x)= ø x 3 x^{3} -ßx-(tanx)sgnx .

f(x)=f(-x).

x 3 x^{3} +ßx-(tanx)sgnx=ø x 3 x^{3} -ßx-(tanx)sgnx.

Or 2x(-ø x 2 x^{2} -ß)=0 for all real x.

So, ø=0 and ß=0 .

So; [ a ] 2 [a]^{2} -5[a]+4=0 and 6 a 2 {a}^{2} -5{a}+1=0 .

(3{x}-1)(2{x}-1)=0 .

So sum of all values of a =35/3
35+3= 38

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...