Is it straight forward?

Algebra Level 5

Given complex numbers z 1 , z 2 z_1,z_2 satisfying:

  • z 1 = 5 , z 2 = 13 |z_1|=5,|z_2|=13

  • 39 z 1 15 z 2 = 7 ( 4 + 7 i ) 39z_1-15z_2=7(4+7i) ,

If z 1 z 2 = a + b i z_1z_2=a+bi with real numbers a , b a,b , find 2 a + b 2a+b

Notation : z |z| denotes the absolute value of complex number z z .


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Xuming Liang
Jan 8, 2016

By properties of conjugate: z 1 z 1 = 5 2 , z 2 z 2 = 1 3 2 z_1\overline {z_1}=5^2, z_2\overline {z_2}=13^2 . Thus, 39 z 1 15 z 2 = 39 1 3 2 z 1 z 2 z 2 15 5 2 z 2 z 1 z 1 = z 1 z 2 ( 3 13 z 2 3 5 z 1 ) = z 1 z 2 ( 15 z 2 39 z 1 65 ) = z 1 z 2 65 39 z 1 15 z 2 \begin{aligned} 39z_1-15z_2&=\frac {39}{13^2}z_1z_2\overline {z_2}-\frac {15}{5^2}z_2z_1\overline {z_1}\\&=z_1z_2(\frac {3}{13}\overline {z_2}-\frac {3}{5}\overline {z_1})\\&=z_1z_2(\frac {15\overline {z_2}-39\overline {z_1}}{65})\\&=-\frac {z_1z_2}{65}\overline {39z_1-15z_2}\end{aligned} .

Rearranging the equation gives us: z 1 z 2 = 65 39 z 1 15 z 2 39 z 1 15 z 2 = 65 4 + 7 i 4 7 i = ( 4 + 7 i ) 2 = 33 56 i \begin{aligned}z_1z_2&=-65\frac {39z_1-15z_2}{\overline {39z_1-15z_2}}\\&=-65\frac {4+7i}{4-7i}\\&=-(4+7i)^2\\&=33-56i\end{aligned} . Therefore, a = 33 , b = 56 a=33,b=-56 and 2 a + b = 10 2a+b=\boxed {10}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...