Is it Summation really?

x 2 + x + 1 1 x = a 0 + a 1 x + a 2 x 2 + \dfrac{x^{2}+x+1}{1-x} = a_{0}+a_1x+a_{2}x^{2}+\cdots
Find the value of i = 0 49 a i \displaystyle \sum_{i=0}^{49} a_i .

146 149 None 147 148

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Prince Loomba
Apr 29, 2016

U s i n g b i n o m i a l t h e o r e m f o r ( ( 1 x ) 1 ) , w e g e t ( ( x 2 + x + 1 ) × ( 1 + x + x 2 . . . ) ) T h e r e f o r e C o e f f i c i e n t a r e : ( a 0 = 1 , a 1 = 2 , a 2 = 3 , a 3 = 3 , a 4 = 3 , . . . . . ) . T h u s s u m b e c o m e s 1 + 2 + 3 + 3 + . . . = 3 × 48 + 2 + 1 = 147. A N S . Using\quad binomial\quad theorem\quad for\quad ((1-x)^{ -1 }),\quad we\quad get\quad ((x^{ 2 }+x+1)\times (1+x+x^{ 2 }...))\\ Therefore\quad Coefficient\quad are\quad :\quad (a_{ 0 }=1,a_{ 1 }=2,a_{ 2 }=3,a_{ 3 }=3,a_{ 4 }=3,.....).\\ Thus\quad sum\quad becomes\quad 1+2+3+3+...=3\times 48+2+1=147.\\ ANS.

Chew-Seong Cheong
Apr 30, 2016

x 2 + x + 1 1 x = x 2 + 3 1 x By long division = 2 x + 3 × 1 1 x By Maclaurin series = 2 x + 3 ( 1 + x + x 2 + x 3 + ) = 1 + 2 x + 3 x 2 + 3 x 3 + 3 x 4 + \begin{aligned} \frac{x^2+x+1}{1-x} & = - x - 2 + \frac{3}{1-x} \quad \quad \small \color{#3D99F6}{\text{By long division}} \\ & = - 2 - x + 3 \times \color{#3D99F6}{\frac{1}{1-x}} \quad \quad \small \color{#3D99F6}{\text{By Maclaurin series}} \\ & = - 2 - x + 3 \color{#3D99F6}{(1 + x + x^2 + x^3 + \cdots)} \\ & = 1 + 2x + 3x^2 + 3x^3 + 3x^4 + \cdots \end{aligned}

i = 0 49 a i = 1 + 2 + 48 ( 3 ) = 147 \implies \displaystyle \sum_{i=0}^{49} a_i = 1 + 2 + 48(3) = \boxed{147}


More about Maclaurin's series .

What is maclaurin series? I used binomial theorem for negative index. here

Prince Loomba - 5 years, 1 month ago

Log in to reply

Sorry, I didn't give reference. More about Maclaurin's series

Chew-Seong Cheong - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...