Too simple and beautiful, to be true?

Algebra Level pending

11 2 = 3 2 \large {11-2=3^2} 1111 22 = 3 3 2 \large {1111-22=33^2} 111111 222 = 33 3 2 \large {111111-222=333^2}

True or False?

11 1 2 n 22 2 n = ( 33 3 n ) 2 \underbrace{11\ldots1}_{2n}-\underbrace{22\ldots2}_{n}=(\underbrace{33\ldots3}_{n})^2 , for all positive integers n n .

True False

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Starting from the left hand side of the equality and considering the decimal expansion of the numbers, we get:

11 1 2 n 22 2 n = ( 1 0 2 n 1 + 1 0 2 n 2 + + 10 + 1 ) 2 × ( 1 0 n 1 + 1 0 n 2 + + 10 + 1 ) \underbrace{11\ldots1}_{2n}-\underbrace{22\ldots2}_{n}=\left(10^{2n-1}+10^{2n-2}+\ldots+10+1\right)-2\times\left(10^{n-1}+10^{n-2}+\ldots+10+1\right)

= 1 0 2 n 1 10 1 2 × 1 0 n 1 10 1 = 1 9 × ( 1 0 2 n 2 × 1 0 n + 1 ) =\frac{10^{2n}-1}{10-1}-2\times\frac{10^{n}-1}{10-1}=\frac{1}{9}\times\left(10^{2n}-2\times10^{n}+1\right)

= 1 9 × ( 1 0 n 1 ) 2 = 9 × ( 1 0 n 1 10 1 ) 2 =\frac{1}{9} \times(10^n-1)^2=9\times\left(\frac{10^{n}-1}{10-1}\right)^2

= 9 × ( 11 1 n ) 2 =9\times{(\underbrace{11\ldots1}_{n})}^2

= ( 33 3 n ) 2 =(\underbrace{33\ldots3}_{n})^2

Hence, the statement is both beautiful and true .

L H S = 111 1 2 n 222 2 n = 1 0 2 n 1 9 2 ( 1 0 n 1 9 ) = ( 1 0 n 3 ) 2 1 9 2 ( 1 0 n 3 ) ( 1 3 ) + 2 9 = ( 1 0 n 3 ) 2 2 ( 1 0 n 3 ) ( 1 3 ) + 1 9 = ( 1 0 n 3 1 3 ) 2 = ( 999 9 n 3 ) 2 = ( 333 3 n ) 2 \begin{aligned} LHS & = \underbrace{111\cdots 1}_{2n} - \underbrace{222\cdots 2}_n \\ & = {\color{#3D99F6}\frac {10^{2n}-1}9} - \color{#D61F06} 2 \left(\frac {10^n-1}9\right) \\ & = {\color{#3D99F6} \left(\frac {10^n}3\right)^2-\frac 19} - \color{#D61F06} 2 \left(\frac {10^n}3\right)\left(\frac 13\right) + \frac 29 \\ & = \left(\frac {10^n}3\right)^2 - 2 \left(\frac {10^n}3\right)\left(\frac 13\right) + \frac 19 \\ & = \left(\frac {10^n}3-\frac 13\right)^2 \\ & = \bigg(\frac {\overbrace{999\cdots 9}^n}3\bigg)^2 \\ & = \big(\underbrace{333\cdots 3}_n\big)^2 \end{aligned}

True , L H S = R H S LHS = RHS .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...