Is matrix A A unique?

Algebra Level pending

Consider two symmetric n × n n \times n positive definite matrices Q 1 Q_1 and Q 2 Q_2 , where n 2 n \ge 2 , we want to find a matrix A A such that

A T Q 1 A = Q 2 A^T Q_1 A = Q_2

What can be said about matrix A A ?

Matrix A A does not necessarily exist There is an infinite number of matrices A A There is a finite number greater than two of matrices A A Matrix A A is unique There is exactly two such matrices A A

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tom Engelsman
May 8, 2021

For simplicity, let's focus on the case n = 2 n=2 with:

A = [ a b c d ] , Q 1 = [ x y y z ] ( x > 0 , x z y 2 > 0 A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, Q_{1} = \begin{bmatrix} x & y \\ y & z \end{bmatrix} (x > 0, xz-y^2 > 0 for positive-definiteness)

and Q 2 = A T Q 1 A = [ a c b d ] [ x y y z ] [ a b c d ] = [ a ( a x + c y ) + c ( a y + c z ) a ( b x + d y ) + c ( b y + d z ) b ( a x + c y ) + d ( a y + c z ) b ( b x + d y ) + d ( b y + d z ) ] Q_{2} = A^{T}Q_{1} A = \begin{bmatrix} a & c \\ b & d \end{bmatrix} \begin{bmatrix} x & y \\ y & z \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a(ax+cy)+c(ay+cz) & a(bx+dy)+c(by+dz) \\ b(ax+cy)+d(ay+cz) & b(bx+dy)+d(by+dz) \end{bmatrix} .

In order for Q 2 = Q 2 T Q_{2} = Q^{T}_{2} , we require Q 2 ( 1 , 2 ) = Q 2 ( 2 , 1 ) a ( b x + d y ) + c ( b y + d z ) = b ( a x + c y ) + d ( a y + c z ) Q_{2(1,2)} = Q_{2(2,1)} \Rightarrow a(bx+dy)+c(by+dz) = b(ax+cy)+d(ay+cz) ;

or ( a b x b a x ) + ( a d y d a y ) + ( c b y b c y ) + ( c d z d c z ) = 0 (abx-bax) + (ady - day) + (cby - bcy) + (cdz-dcz) = 0 ;

or 0 = 0 0 = 0 for all a , b , c , d a,b,c,d .

which means there exists an infinite number of matrices A A .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...