Is my calculator giving rounding errors?

Calculus Level 5

0 sin x x d x 0 n = 1 8 sin ( x 2 n 1 ) x 2 n 1 d x \large \displaystyle \int_0^{\infty} \dfrac {\sin x}{x} \, dx - \displaystyle \int_0^{\infty} \displaystyle \prod_{n=1}^{8} \dfrac {\sin \left (\frac{x}{2n-1} \right )}{\frac{x}{2n-1}} \, dx

Find the value of the closed form of the above expression.

Give your answer to 3 significant places.


The answer is 2.31E-11.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Jan 11, 2017

These are what are called the Borwein integrals. For any k > 0 k > 0 define the function f k ( x ) = k 2 χ [ k 1 , k 1 ] ( x ) f_k(x) \; = \; \tfrac{k}{2} \chi_{[-k^{-1},k^{-1}]}(x) noting that R f k ( x ) d x = 1 ( F f k ) ( y ) = 1 2 π s i n c ( y k ) \int_\mathbb{R} f_k(x)\,dx \; = \; 1 \hspace{2cm} (\mathcal{F}f_k)(y) \; =\; \tfrac{1}{\sqrt{2\pi}} \mathrm{sinc}\big(\tfrac{y}{k}\big) for any k > 0 k > 0 , where F \mathcal{F} denotes the Fourier transform, and s i n c ( x ) = sin x x \mathrm{sinc}(x) \; = \; \frac{\sin x}{x} Thus j = 1 n s i n c ( y 2 j + 1 ) = ( 2 π ) 1 2 n j = 1 n ( F f 2 j + 1 ) ( y ) = 2 π [ F ( f 3 f 5 f 2 n + 1 ) ] ( y ) \prod_{j=1}^n \mathrm{sinc}\big(\tfrac{y}{2j+1}\big) \; = \; (2\pi)^{\frac12n} \prod_{j=1}^n (\mathcal{F}f_{2j+1})(y) \; = \; \sqrt{2\pi} \big[\mathcal{F} (f_3 \star f_5 \star \cdots \star f_{2n+1})\big](y) where \star denotes the convolution operation ( f g ) ( x ) = R f ( y ) g ( x y ) d y (f \star g)(x) \; =\; \int_{\mathbb{R}} f(y)g(x-y)\,dy for suitable functions f , g f,g . Note that all functions we shall be dealing with are "suitable". Thus B n = 0 j = 0 n s i n c ( x 2 j + 1 ) d x = 1 2 × 2 π F f 1 , F ( f 3 f 5 f 2 n + 1 ) = π f 1 , f 3 f 5 f 2 n + 1 = 1 2 π 1 1 ( f 3 f 5 f 2 n + 1 ) ( x ) d x \begin{aligned} B_n \; = \; \int_0^\infty \prod_{j=0}^n \mathrm{sinc}\big(\tfrac{x}{2j+1}\big)\,dx & = \tfrac12\times2\pi\big\langle \mathcal{F}f_1 \,,\, \mathcal{F}(f_3 \star f_5 \star \cdots f_{2n+1})\big\rangle \\ & = \pi\big\langle f_1\,,\, f_3 \star f_5 \star \cdots \star f_{2n+1} \big\rangle \\ & = \tfrac12\pi \int_{-1}^1 \big(f_3 \star f_5 \star \cdots \star f_{2n+1}\big)(x)\,dx \end{aligned} Now define c n = j = 1 n 1 2 j + 1 c_n \; = \; \sum_{j=1}^n \frac{1}{2j+1} and let F n ( x ) = ( f 3 f 5 f 2 n + 1 ) ( x ) F_n(x) \; = \; (f_3 \star f_5 \star \cdots \star f_{2n+1})(x) It is a simple matter of induction to note that:

  • F n F_n is an even function of x x ,
  • F n ( x ) F_n(x) vanishes for x > c n |x| > c_n ,
  • we have F n ( x ) = ( 2 n + 1 ) ! ! 2 n ( n 1 ) ! ( c n x ) n 1 c n 1 < x < c n . F_n(x) \; = \; \frac{(2n+1)!!}{2^n (n-1)!} (c_n - x)^{n-1} \hspace{1cm} c_{n-1} < x < c_n \;.

Thus, if n n is small enough that c n < 1 c_n < 1 , then B n = 1 2 π 1 1 F n ( x ) d x = 1 2 π R F n ( x ) d x = 1 2 π j = 1 n R f 2 j + 1 ( x ) d x = 1 2 π B_n \; = \; \tfrac12\pi \int_{-1}^1 F_n(x)\,dx \; = \; \tfrac12\pi \int_{\mathbb{R}}F_n(x)\,dx \; = \; \tfrac12\pi \prod_{j=1}^n \int_{\mathbb{R}}f_{2j+1}(x)\,dx \; = \; \tfrac12\pi On the other hand, if n n is such that c n 1 < 1 < c n c_{n-1} < 1 < c_n , then B n = 1 2 π π 1 F n ( x ) d x = 1 2 π π 1 c n ( 2 n + 1 ) ! ! 2 n ( n 1 ) ! ( c n x ) n 1 d x = 1 2 π π ( 2 n + 1 ) ! ! 2 n n ! ( c n 1 ) n \begin{aligned} B_n & = \tfrac12\pi - \pi\int_1^\infty F_n(x)\,dx \; = \; \tfrac12\pi - \pi\int_1^{c_n} \frac{(2n+1)!!}{2^n (n-1)!}(c_n-x)^{n-1}\,dx \\ & = \tfrac12\pi - \pi \frac{(2n+1)!!}{2^n n!}(c_n-1)^n \end{aligned} In our case the key value is n = 7 n=7 , since c 6 < 1 < c 7 c_6 < 1 < c_7 , and hence 1 2 π B 7 = π 15 ! ! 2 7 7 ! ( c 7 1 ) 7 = 6879714958723010531 935615849440640907310521750000 π = 2.31 × 1 0 11 \tfrac12\pi - B_7 \; = \; \pi \frac{15!!}{2^7 7!}(c_7-1)^7 \; = \; \frac{6879714958723010531}{935615849440640907310521750000}\pi \; = \; 2.31 \times 10^{-11} while each of B 1 , B 2 , B 3 , B 4 , B 5 , B 6 B_1,B_2,B_3,B_4,B_5,B_6 is equal to 1 2 π \tfrac12\pi .

Is there any other simpler way ???

Kushal Bose - 4 years, 4 months ago

Log in to reply

Not to my knowledge. The reason for the change of the value of the integral would have to be pretty subtle. Taking the Fourier transform reduces the problem to analysing the behaviour of the convolutions of characteristic functions of intervals, which is not too bad.

Mark Hennings - 4 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...