Is No Square Negative?

Algebra Level pending

For positive reals a a and b b , find the maximum value of the expression below.

2 ( a ( a + b ) 3 + b a 2 + b 2 ) a 2 + b 2 \frac{\sqrt{2}\left(\sqrt{a(a+b)^{3}}+b\sqrt{a^{2}+b^{2}}\right)}{a^2+b^2}


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Nitin Kumar
Apr 17, 2020

2 ( a ( a + b ) 3 + b a 2 + b 2 ) \sqrt{2}(\sqrt{a(a+b)^3}+b\sqrt{a^2+b^2})

= ( 2 a 2 + 2 a b ) ( a + b ) 2 + 2 b 2 ( a 2 + b 2 ) =\sqrt{(2a^2+2ab)(a+b)^2}+\sqrt{2b^2(a^2+b^2)}

( 3 a 2 + b 2 ) ( 2 a 2 + 2 b 2 ) + 2 b 2 ( a 2 + b 2 ) \leq \sqrt{(3a^2+b^2)(2a^2+2b^2)}+\sqrt{2b^2(a^2+b^2)} because a 2 + b 2 2 a b a^{2}+b^{2} \geq 2ab

3 a 2 + b 2 + 2 a 2 + 2 b 2 2 + 2 b 2 + a 2 + b 2 2 = 3 ( a 2 + b 2 ) . \leq \frac{3a^2+b^2+2a^2+2b^2}{2}+ \frac{2b^2+a^2+b^2}{2}= 3(a^2+b^2). because x y x + y 2 \sqrt{xy} \leq \frac{x+y}{2}

This problem was taken from the Mathematical Olympiad Summer Program- 2005 Red Group Algebra Problem 1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...