If and are positive integers satisfying the equation above, find the sum of all possible values of .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
( α − 3 β ) 2 + 2 0 3 ( α − 3 ) ( β − 1 ) − 1 9 1 α β = 9
α 2 − 6 α β + 9 β 2 + 2 0 3 α β − 2 0 3 α − 6 0 9 β + 6 0 9 − 1 9 1 α β = 9
α 2 + 6 α β + 9 β 2 − 2 0 3 α − 6 0 9 β + 6 0 0 = 0
( α + 3 β ) 2 − 2 0 3 ( α + 3 β ) + 6 0 0 = 0
Let's say that α + 3 β = x
x 2 − 2 0 3 x + 6 0 0 = 0
( x − 2 0 0 ) ( x − 3 ) = 0
x = 2 0 0 or x = 3
Because α and β are positive integers, x = 3 is impossible. We use x = 2 0 0 .
α + 3 β = 2 0 0
If β = 1 , α = 1 9 7
If β = 2 , α = 1 9 4
and forth, until β = 6 6 , α = 2
Count all possible values of α
2 + 5 + . . . + 1 9 4 + 1 9 7 = 3 3 ( 2 + 1 9 7 ) = 6 5 6 7