Is not hard!

( α 3 β ) 2 + 203 ( α 3 ) ( β 1 ) 191 α β = 9 ( \alpha - 3\beta)^2 +203 (\alpha - 3)(\beta - 1) -191\alpha \beta = 9

If α \alpha and β \beta are positive integers satisfying the equation above, find the sum of all possible values of α \alpha .


The answer is 6567.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Raihan Fauzan
May 6, 2016

( α 3 β ) 2 + 203 ( α 3 ) ( β 1 ) 191 α β = 9 (\alpha - 3\beta)^{2} + 203(\alpha - 3)(\beta - 1) - 191\alpha\beta = 9

α 2 6 α β + 9 β 2 + 203 α β 203 α 609 β + 609 191 α β = 9 \alpha^{2} - 6\alpha\beta + 9\beta^{2} + 203\alpha\beta - 203\alpha - 609\beta + 609 - 191\alpha\beta = 9

α 2 + 6 α β + 9 β 2 203 α 609 β + 600 = 0 \alpha^{2} + 6\alpha\beta + 9\beta^{2} - 203\alpha - 609\beta + 600 = 0

( α + 3 β ) 2 203 ( α + 3 β ) + 600 = 0 (\alpha + 3\beta)^{2} - 203(\alpha + 3\beta) + 600 = 0

Let's say that α + 3 β = x \alpha + 3\beta = x

x 2 203 x + 600 = 0 x^2 - 203x + 600 = 0

( x 200 ) ( x 3 ) = 0 (x - 200)(x - 3) = 0

x = 200 x = 200 or x = 3 x = 3

Because α \alpha and β \beta are positive integers, x = 3 x = 3 is impossible. We use x = 200 x = 200 .

α + 3 β = 200 \alpha + 3\beta = 200

If β = 1 , α = 197 \beta = 1, \alpha = 197

If β = 2 , α = 194 \beta = 2, \alpha = 194

and forth, until β = 66 , α = 2 \beta = 66, \alpha = 2

Count all possible values of α \alpha

2 + 5 + . . . + 194 + 197 = 33 ( 2 + 197 ) = 6567 2 + 5 + ... + 194 + 197 = 33(2 + 197) = \boxed{6567}

Tidak bermutu

Ardhiana Yahya Ramadhan - 4 years, 5 months ago

Soalnya sangat bermutu, pembahasan dari raihan tidak bermutu

Ardhiana Yahya Ramadhan - 4 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...