If the integral can be adjusted in the form of , find the value of .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let I m = ∫ 0 π 1 − c o s x 1 − cos m x d x
Now, for m=1,2,3 , I m = π , 2 π , 3 π . So, claim : I m = m π
Proof by induction:
As I 1 is true , let the result be true for all positive integers ≤ k where k ∈ N
Then, I k = ∫ 0 π 1 − c o s x 1 − cos k x d x = k π , f o r k = 1 , 2 , . . . , k − 1 , k I k + 1 − I k = ∫ 0 π 1 − c o s x ( 1 − cos ( k + 1 ) x ) − ( 1 − c o s k x ) d x = ∫ 0 π 1 − c o s x c o s k x − c o s ( k + 1 ) x d x = ∫ 0 π 2 s i n 2 ( 2 x ) 2 s i n ( k + 2 1 ) x . s i n ( 2 x ) d x = ∫ 0 π s i n ( 2 x ) s i n ( k + 2 1 ) x d x Now substituting k = k-1 I k − I k − 1 = ∫ 0 π s i n ( 2 x ) s i n ( k − 2 1 ) x d x ∴ ( I k + 1 − I k ) − ( I k − I k − 1 ) = ∫ 0 π s i n 2 x s i n ( k + 2 1 ) x − s i n ( k − 2 1 ) x d x = ∫ 0 π s i n 2 x 2 c o s k x s i n 2 x d x = 2 [ k s i n k x ] 0 π = 0 So, I k + 1 = 2 I k − I k − 1
I k + 1 = 2 k π − ( k − 1 ) π
Hence, I k + 1 = ( k + 1 ) π So, by induction I m = m π ∀ m ∈ N
I 7 4 = 7 4 π = 6 4 4 4 π 1 a+b=445