Is sine injective over rationals?

Calculus Level 3

Is the function sin : Q R \sin \colon \mathbb{Q} \to \mathbb{R} injective?

Yes No

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Piotr Idzik
Dec 30, 2020

We will show, that the function sin : Q R \sin \colon \mathbb{Q} \to \mathbb{R} is injective. Indeed, suppose that sin α = sin β \sin \alpha = \sin \beta for some α , β Q \alpha, \beta \in \mathbb{Q} . In other words: sin α sin β = 0. \sin \alpha - \sin \beta = 0. Recall that sin x sin y = 2 sin x y 2 cos x + y 2 \sin x - \sin y = 2 \sin \frac{x-y}{2} \cos \frac{x+y}{2} , for all x , y R x, y \in \mathbb{R} , therefore sin α β 2 cos α + β 2 = 0. \sin \frac{\alpha-\beta}{2} \cos \frac{\alpha+\beta}{2} = 0. Furthermore, for x R x \in \mathbb{R} :

  • sin x = 0 \sin x = 0 if and only if x = μ π x = \mu \pi , for some μ Z \mu \in \mathbb{Z} ,
  • cos x = 0 \cos x = 0 if and only if x = π 2 + ν π x = \frac{\pi}{2}+\nu \pi , for some ν Z \nu \in \mathbb{Z} ,

hence α β = 2 μ π or α + β = π + 2 ν π , \alpha-\beta = 2\mu\pi \text{ or } \alpha+\beta = \pi+2\nu\pi, for some μ , ν Z \mu, \nu \in \mathbb{Z} .

Because π \pi is irrational, we have that:

  • for all k Z k \in \mathbb{Z} the number k π Q k \pi \in \mathbb{Q} if and only if k = 0 k = 0 ,
  • for all k Z k \in \mathbb{Z} the number π + 2 k π \pi + 2k\pi is irrational.

Using above and the assumption that α , β Q \alpha, \beta \in \mathbb{Q} , we obtain that α = β \alpha = \beta , which proves the claim.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...