Is something sketchy going on here?

Algebra Level 4

The system of equations 4 a 4 + 36 a 2 b 2 + 9 b 4 = 20 a 2 + 30 b 2 1 4a^4+36a^2b^2+9b^4=20a^2+30b^2-1 2 a 3 b + 3 a b 3 = 5 a b 2a^3b+3ab^3=5ab has n n nonnegative (meaning both a a and b b are nonnegative) real solutions. Let these solutions be ( a 1 , b 1 ) , ( a 2 , b 2 ) , ( a n , b n ) (a_1,b_1),(a_2,b_2),\cdots (a_n,b_n) . The value of the sum i = 1 n a i + b i \sum_{i=1}^n a_i+b_i can be expressed in the form a + b c d \dfrac{a+b\sqrt{c}}{d} where gcd ( a , b , d ) = 1 \gcd (a,b,d)=1 and c c is squarefree. Find a + b + c + d a+b+c+d .


The answer is 47.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Factor the second equation:

a b ( 2 a 2 + 3 b 2 5 ) = 0 ab(2a^2+3b^2-5)=0

First we have a = 0 a=0 . Substitute that in the first equation to obtain:

9 b 4 30 b 2 + 1 = 0 9b^4-30b^2+1=0

That equation has two positive roots: b = 3 ± 6 3 b=\dfrac{3 \pm \sqrt{6}}{3}

Now with b = 0 b=0 do the same:

4 a 4 20 a 2 + 1 = 0 4a^4-20a^2+1=0

That equation has two positive roots: a = 6 ± 2 2 a=\dfrac{\sqrt{6} \pm 2}{2}

Finally, do the same with 2 a 2 + 3 b 2 = 5 2a^2+3b^2=5 . Rearrange the first equation:

( 2 a 2 + 3 b 2 ) 2 + 24 a 2 b 2 = 10 ( 2 a 2 + 3 b 2 ) 1 (2a^2+3b^2)^2+24a^2b^2=10(2a^2+3b^2)-1

5 2 + 24 a 2 b 2 = 10 ( 5 ) 1 5^2+24a^2b^2=10(5)-1

a 2 b 2 = 1 a 2 = 1 b 2 a^2b^2=1 \implies a^2=\dfrac{1}{b^2}

Substitute that in 2 a 2 + 3 b 2 = 5 2a^2+3b^2=5 :

2 b 2 + 3 b 2 = 5 3 b 4 5 b 2 + 2 = 0 \dfrac{2}{b^2}+3b^2=5 \implies 3b^4-5b^2+2=0

That equation has two positive roots: b = 1 b=1 and b = 6 3 b=\dfrac{\sqrt{6}}{3} . For a a we get, respectively: a = 1 a=1 and a = 6 2 a=\dfrac{\sqrt{6}}{2} .

Finally, our pairs are: ( a , b ) = ( 0 , 3 + 6 3 ) , ( 0 , 3 6 3 ) , ( 6 + 2 2 , 0 ) , ( 6 2 2 , 0 ) , ( 1 , 1 ) , ( 6 2 , 6 3 ) (a,b)=\left(0,\dfrac{3+\sqrt{6}}{3}\right),\left(0,\dfrac{3-\sqrt{6}}{3}\right),\left(\dfrac{\sqrt{6}+2}{2},0\right),\left(\dfrac{\sqrt{6}-2}{2},0\right),(1,1),\left(\dfrac{\sqrt{6}}{2},\dfrac{\sqrt{6}}{3}\right)

Sum everything and you get: 24 + 11 6 6 \dfrac{24+11\sqrt{6}}{6} . So, the final answer is 24 + 11 + 6 + 6 = 47 24+11+6+6=\boxed{47} .

Nathan Ramesh
Jan 3, 2015

Multiply the second equation by 4 6 4\sqrt{6} , add it to the first, then factor to get ( a 2 + b 3 ) 4 = 10 ( a 2 + b 3 ) 2 1. (a\sqrt{2}+b\sqrt{3})^4=10(a\sqrt{2}+b\sqrt{3})^2-1. Letting x = a 2 + b 3 x=a\sqrt{2}+b\sqrt{3} and rearranging gives x 4 10 x 2 + 1 = 0 x^4-10x^2+1=0 Which can be solved as a quadratic in x 2 x^2 after which x x can be computed as ± 2 ± 3 \pm\sqrt{2}\pm\sqrt{3} , after which the solutions are easy to find.

Missed the fact that gcd ( a , b , d ) = 1 \gcd(a,b,d)=1 :( And of course my immediate reaction - reveal solution :D I'm curious what the fraction is as I am bad at manipulating them.

Marc Vince Casimiro - 6 years, 5 months ago

Log in to reply

It is 24 + 11 6 6 \frac {24+11\sqrt {6}}{6} .

Joel Tan - 6 years, 5 months ago

a b ( 2 a 2 + 3 b 2 ) = 5 a b ab(2a^2+3b^2)=5ab a b = 0 o r 2 a 2 + 3 b 2 = 5 ab=0 or 2a^2+3b^2=5 ( 2 a 2 + 3 b 2 ) 2 + 24 a 2 b 2 = 10 ( 2 a 2 + 3 b 2 ) 1 = 50 1 = 49 (2a^2+3b^2)^2+24a^2b^2=10(2a^2+3b^2)-1=50-1=49 25 + 24 a 2 b 2 = 49 25+24a^2b^2=49 24 a 2 b 2 = 24 24a^2b^2=24 a 2 b 2 = 1 a^2b^2=1 2 a 2 + 3 b 2 = 5 2a^2+3b^2=5 2 a 2 + 3 ( 1 a 2 ) = 5 2a^2+3(\frac{1}{a^2})=5 2 a 4 + 3 = 5 a 2 2a^4+3=5a^2 a 2 = 3 2 , b 2 = 2 3 a^2=\frac{3}{2}, b^2=\frac{2}{3} a b = 0 < = > a = 0 , b = 0 ab=0 <=> a=0, b=0 a = 0 , 9 b 4 = 30 b 2 1 a=0, 9b^4=30b^2-1 9 b 4 30 b 2 + 1 = 0 9b^4-30b^2+1=0 b 2 = + 216 + 15 9 b^2=\frac{+-\sqrt{216}+15}{9} b 1 = + 216 + 15 3 b_1=\frac{\sqrt{+\sqrt{216}+15}}{3} b 2 = 216 + 15 3 b_2=\frac{\sqrt{-\sqrt{216}+15}}{3} b 1 + b 2 = 1 3 ( 216 + 15 + 216 + 15 ) = b_1+b_2=\frac{1}{3}(\sqrt{\sqrt{216}+15}+\sqrt{-\sqrt{216}+15})= 1 216 + 15 + 1 + 216 + 15 = \frac{1}{\sqrt{-\sqrt{216}+15}}+\frac{1}{\sqrt{+\sqrt{216}+15}}= 1 6 6 + 15 + 1 6 6 + 15 \frac{1}{\sqrt{-6\sqrt{6}+15}}+\frac{1}{\sqrt{6\sqrt{6}+15}} b = 0 b=0 4 a 4 20 a 2 + 1 = 0 4a^4-20a^2+1=0 a 2 = + 96 + 10 4 a^2=\frac{+-\sqrt{96}+10}{4} a 1 = + 96 + 10 2 a_1=\frac{\sqrt{+\sqrt{96}+10}}{2} a 2 = 96 + 10 2 a_2=\frac{\sqrt{-\sqrt{96}+10}}{2} S = 2 + 5 6 + 1 6 6 + 15 + 1 + 6 6 + 15 + 1 + 4 6 + 10 + 1 4 6 + 10 S=2+\frac{5}{\sqrt{6}}+\frac{1}{\sqrt{-6\sqrt{6}+15}}+\frac{1}{\sqrt{+6\sqrt{6}+15}}+\frac{1}{\sqrt{+4\sqrt{6}+10}}+\frac{1}{\sqrt{-4\sqrt{6}+10}} = 2 + 5 6 + 1 3 ( 3 2 ) + 1 3 ( 3 + 2 ) + 1 2 ( 3 + 2 ) + 1 2 ( 3 2 ) =2+\frac{5}{\sqrt{6}}+\frac{1}{\sqrt{3}*(\sqrt{3}-\sqrt{2})}+\frac{1}{\sqrt{3}*(\sqrt{3}+\sqrt{2})}+\frac{1}{\sqrt{2}*(\sqrt{3}+\sqrt{2})}+\frac{1}{\sqrt{2}*(\sqrt{3}-\sqrt{2})} = 2 6 + 5 + 2 ( 3 + 2 ) + 2 ( 3 2 ) + 3 ( 3 2 ) + 3 ( 3 + 2 ) 6 =\frac{2\sqrt{6}+5+\sqrt{2}(\sqrt{3}+\sqrt{2})+\sqrt{2}(\sqrt{3}-\sqrt{2})+\sqrt{3}(\sqrt{3}-\sqrt{2})+\sqrt{3}(\sqrt{3}+\sqrt{2})}{\sqrt{6}} = 2 6 + 6 + ( 3 + 2 ) 2 6 =\frac{2\sqrt{6}+6+(\sqrt{3}+\sqrt{2})^2}{\sqrt{6}} = 2 6 + 6 + 5 + 2 6 6 =\frac{2\sqrt{6}+6+5+2\sqrt{6}}{\sqrt{6}} = 11 + 4 6 6 =\frac{11+4\sqrt{6}}{\sqrt{6}} = 6 ( 11 + 4 6 ) 6 = 24 + 11 6 6 =\frac{\sqrt{6}(11+4\sqrt{6})}{6}=\frac{24+11\sqrt{6}}{6} a + b + c + d = 47 a+b+c+d=\boxed{47}

Liftmeup Nguyen
Jan 4, 2015

From the second equation, I found that a =0 or b = 0 or 2.a^2+3.b^2 = 5.

If a = 0, from the first equation, I have 9.b^4-30.b^2+1=0.

If b = 0, from the first equation, I have 4.a^4-20.a^2+1=0.

If 2.a^2+3.b^2=5, I have a=b=1 or a= \frac{3}{2} .b .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...