What number base is this?

Logic Level 3

228 , 72 , 53 , 34 , ? \LARGE \color{#D61F06} {228},\color{#69047E}{72},\color{#20A900} {53},\color{magenta} {34},?


The answer is 25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Shubhendra Singh
May 6, 2015

Here's the logic

  • 2 2 + 2 2 + 8 2 = 72 2^{2}+2^{2}+8^{2}=72

  • 7 2 + 2 2 = 53 7^{2}+2^{2}=53

  • 5 2 + 3 2 = 34 5^{2}+3^{2}=34

  • ? = 3 2 + 4 2 = 25 ?=3^{2}+4^{2}=\large{25}

Moderator note:

Good. Can the same rules applies to the preceding terms? That is, does there exist an integer before the number 228 228 ? If yes, can you find the smallest possible number before 228 228 ? And the smallest number before it?

Since there is the four square theorem, there will always be a preceding term (a 4-digit one at least) for any number in the sequence.

Karan Jain - 6 years, 1 month ago

Log in to reply

@ C h a l l e n g e m a s t e r : @Challenge master: The previous number before 228 228 can be 6888 , 8688 , 8868 , 8886 , 7779 , 7797 , 7977 , 9777 6888,8688,8868,8886,7779,7797,7977,9777 smallest of which is 6888 6888

Vighnesh Raut - 6 years, 1 month ago
Arpit MIshra
May 6, 2015

Each succeeding number is equal to the sum of squares of the digits of the previous number:

If a number is = 29 \huge\color{#333333}{29} the next number will be equal to ( 2 2 + 9 2 ) = 85 \huge\color{#333333}(2^{2}+9^{2}) = 85

  • 2 2 + 2 2 + 8 2 = 4 + 4 + 64 = 72 \huge\color{#D61F06}{2^{2}+2^{2}+8^{2} = 4 + 4 + 64 }= \color{#69047E}{72}

  • 7 2 + 2 2 = 49 + 4 = 53 \huge\color{#69047E}{7^{2}+2^{2} = 49 + 4 }= \color{#20A900}{53}

  • 5 2 + 3 2 = 25 + 9 = 34 \huge\color{#20A900}{5^{2}+3^{2} =25 + 9}= \color{magenta}{34}

  • 3 2 + 4 2 = 9 + 16 = 25 \huge\color{magenta}{3^{2}+4^{2} = 9 + 16 }= \color{turquoise}{25}

The next numbers in this series are, 228 , 72 , 53 , 34 , 25 , 29 , 85 , 89 , 145 , 42 , 20 , 4 , 16 , 37 , 58 , 89 , 145 , 42 , 20 , 4 , 16 , 37 , 58 , . . . . \huge \color{#D61F06} {228},\color{#69047E}{72},\color{#20A900} {53},\color{magenta} {34}, \color{turquoise}{25}, \color{#333333}{29},\color{maroon}{85},\color{#302B94}{89},\color{lime}{145},\color{rosybrown}{42},\color{cyan}{20},\color{khaki}{4},\color{teal}{16},\color{olive}{37}, \color{plum}{58}, \color{#302B94}{89}, \color{lime}{145},\color{rosybrown}{42},\color{cyan}{20},\color{khaki}{4},\color{teal}{16},\color{olive}{37}, \color{plum}{58}, \color{#333333}{. . . .}

This is an i n f i n i t e \huge infinite series since there are infinite preceding terms and the series goes in a loop after the number 58 \huge \color{plum}{58} .

Moderator note:

Nice. Are there infinite number of distinct integers in this sequence? If no, can you find the sum of all distinct numbers in this sequence? If yes, why?

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...