The above shows a trigonometric identity, where are positive integers and , enter .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
We begin by establishing values of A , B , C that meet the criteria:
tan 5 x ≡ 1 − tan 2 x tan 3 x tan 2 x + tan 3 x Using tan ( A + B ) ≡ 1 − tan A tan B tan A + tan B
tan 5 x ( 1 − tan 2 x tan 3 x ) ≡ tan 2 x + tan 3 x
tan 5 x − tan 2 x tan 3 x tan 5 x ≡ tan 2 x + tan 3 x
tan 2 x tan 3 x tan 5 x ≡ tan 5 x − tan 3 x − tan 2 x
B + C = 3 + 2 = 5 = A so these values meet the criteria.
A + B + C = 5 + 3 + 2 = 1 0
Now I shall prove that this is the only solution:
tan A − tan B − tan C ≡ tan A − tan ( B + C ) ( 1 − tan B tan C ) ≡ tan A tan B tan C + ( tan A − tan A ) ≡ tan A tan B tan C As B + C = A
Now as A , B , C are positive integers and B + C = A it is clear the only solution is A = 5 and ( B , C ) = ( 3 , 2 ) .