Is that even positive ?

Algebra Level 2

The imaginary part of { 1 1 + a i + b a i } \{ \frac { 1 }{ 1+ai } +\frac { b }{ a-i } \} is always positive where a,b are real numbers

Is the statement correct ?

We can't know True False

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ahmad Hesham
Jul 16, 2015

1 1 + a i + b a i \frac { 1 }{ 1+ai } +\frac { b }{ a-i }

= 1 1 + a i × 1 a i 1 a i + b a i × a + i a + i =\frac { 1 }{ 1+ai } \times \frac { 1-ai }{ 1-ai } +\frac { b }{ a-i } \times \frac { a+i }{ a+i }

= 1 a i 1 + a 2 + a b + b i 1 + a 2 =\frac { 1-ai }{ 1+{ a }^{ 2 } } +\frac { ab+bi }{ 1+{ a }^{ 2 } }

= 1 + a b + ( b a ) i 1 + a 2 =\frac { 1+ab+(b-a)i }{ 1+{ a }^{ 2 } }

= 1 + a b 1 + a 2 + b a 1 + a 2 i =\frac { 1+ab }{ 1+{ a }^{ 2 } } +\frac { b-a }{ 1+{ a }^{ 2 } } i

T h e i m a g i n a r y p a r t i s p o s i t i v e o n l y w h e n b > a \therefore The\quad imaginary\quad part\quad is\quad positive\quad only\quad when\quad \boxed { b>a }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...