Is that it?

Algebra Level 1

Given that the sequence a , b , 20 , c , d a , b, 20, c, d is an arithmetic progression:

Find a + b + c + d a + b + c + d .


The answer is 80.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

22 solutions

Suppose that n = 20 n=20 , and the difference between each term is x x .

a = n 2 x a=n-2x

b = n x b=n-x

c = n + x c=n+x

d = n + 2 x d=n+2x

By summing all the 4 equations above, we get:

a + b + c + d = ( n 2 x ) + ( n x ) + ( n + x ) + ( n + 2 x ) a+b+c+d=(n-2x)+(n-x)+(n+x)+(n+2x)

a + b + c + d = 4 n a+b+c+d=4n

By substituting n = 20 n=20 , we get:

a + b + c + d = 80 \boxed{a+b+c+d=80}

A simpler approach is to use that 20 20 is the arithmetic mean of this AP. Hence, we have,

a + b + 20 + c + d 5 = 20 a + b + c + d = 100 20 = 80 \frac{a+b+20+c+d}{5}=20\implies a+b+c+d=100-20=\boxed{80}

Prasun Biswas - 5 years, 11 months ago
Krishna Ramesh
Apr 16, 2014

since a, b, 20, c, d are in AP,

20-b = c-20 (terms have same common difference between them)

that gives us, b+c=40...............(i)

similarly, b-a=d-c

that gives us b+c = a+d

so, a+b+c+d = 40+40 = 80

Nalin Kanwar
Mar 24, 2014

G i v e n t h a t a 1 i s t h e f i r s t t e r m i n t h e s e q u e n c e a n d d b e t h e c o n s t a n t d i f f e r e n c e b e t w e e n t w o c o n s e c u t i v e t e r m s , n t h e l e m e n t c a n b e d e f i n e d a s , a n = a 1 + ( n 1 ) d F o r n = 3 , a n = 20 , a 1 = a 20 = a + ( 3 1 ) d A l s o , d = b a = 20 b = c 20 = d c S o , a = 20 2 ( b a ) a = ( 20 2 b ) 3 T h e s u m o f t h e m e m b e r s o f a f i n i t e a r i t h m e t i c p r o g r e s s i o n i s c a l l e d a n a r i t h m e t i c s e r i e s . f o r n m e m b e r s , t h e s u m w o u l d b e a 1 + . . . + a n = n ( a 1 + a n ) 2 S o , f o r n = 3 , a + b + 20 = 3 ( a + 20 ) 2 a = ( 2 b 20 ) S o , ( 20 2 b ) 3 = ( 2 b 20 ) b = 10 t h u s , o u r A P i s a , 10 , 20 , c , d S o , d = ( 20 10 ) = 10 T h u s , t h e s e q u e n c e i s 0 , 10 , 20 , 30 , 40 a n d a + b + c + d = 80. Given\quad that\quad { a }_{ 1 }\quad is\quad the\quad first\quad term\quad in\quad the\quad sequence\quad and\quad d\quad be\quad \\ the\quad constant\quad difference\quad between\quad two\quad consecutive\quad terms,\quad \\ { n }^{ th }\quad element\quad can\quad be\quad defined\quad as,\qquad \qquad \\ \qquad \qquad \qquad \qquad { a }_{ n }={ a }_{ 1 }+(n-1)d\\ \qquad \\ For\quad n=3,\quad a_{ n }=20,\quad { a }_{ 1 }=a\\ \qquad 20={ a }+(3-1)d\\ Also,\quad d=b-a=20-b=c-20=d-c\\ \qquad So,\quad a=20-2(b-a)\\ \quad \\ \qquad \qquad \qquad \qquad \boxed { a=\frac { (20-2b) }{ 3 } } \\ \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \\ The\quad sum\quad of\quad the\quad members\quad of\quad a\quad finite\quad arithmetic\quad \\ progression\quad is\quad called\quad an\quad arithmetic\quad series.\\ for\quad n\quad members,\quad the\quad sum\quad would\quad be\\ \qquad \qquad \qquad \qquad { a }_{ 1 }+...+{ a }_{ n }=\frac { n({ a }_{ 1 }+{ a }_{ n }) }{ 2 } \\ \\ So,\quad for\quad n=3,\\ \qquad \qquad \qquad \qquad a+b+20=\frac { 3(a+20) }{ 2 } \\ \\ \qquad \qquad \qquad \qquad \boxed { a=(2b-20) } \\ \\ So,\quad \frac { (20-2b) }{ 3 } =(2b-20)\\ \\ b=10\\ \\ thus,\quad our\quad AP\quad is\quad a,\quad 10,\quad 20,\quad c,\quad d\\ \\ So,\quad d=(20-10)=10\\ Thus,\quad the\quad sequence\quad is\quad 0,\quad 10,\quad 20,\quad 30,\quad 40\\ \\ and\quad a+b+c+d=80.\quad \\ \qquad

There is no need to know the actual sequence, because whatever the difference of the sequence is, the result of a + b + c + d a+b+c+d will always be 4 4 times as the 3 r d 3^{rd} term.

But still, great solution.

Ahmad Naufal Hakim - 7 years, 2 months ago
Victor Loh
May 18, 2014

Let the difference between each number be \text{Let the difference between each number be} n n . Then we have \text{Then we have}

a = 20 2 n , a=20-2n, b = 20 n , b=20-n, c = 20 + n , c=20+n, d = 20 + 2 n . d=20+2n.

The required answer is simply \text{The required answer is simply }

a + b + c + d = ( 20 2 n ) + ( 20 n ) + ( 20 + n ) + ( 20 + 2 n ) = 80 . a+b+c+d=(20-2n)+(20-n)+(20+n)+(20+2n)=\boxed{80}.

Yo guys,

as given a,b,20,c,d,

since it is an arithmetic progression,use common difference method....

d - c = c -20 = 20 - b = b-a,

(c - 20 = d - c) , (20 - b = c -20) , (b -a = 20 -b) , (b - a = d - c)

2c = d + 20 , b + c = 40 , 2b = a + 20 , b + c = a + d ,

noted that b + c = a + d = 40,

therefore, b + c = 40 , a + d = 40,

a + b + c + d = 40 + 40 = 80,

thanks...

Aaaaa Bbbbb
Apr 18, 2014

( 20 × 2 ) × 5 2 20 = 80 \frac{(20 \times 2) \times 5} {2}-20=\boxed{80}

Milind Prabhu
Apr 8, 2014

The numbers are in arithmetic progression so

a , b , 20 , c , d a, b, 20, c, d can be expressed as

20 2 k , 20 k , 20 , 20 + K , 20 + 2 k 20-2k , 20-k, 20, 20+K, 20+2k

a + b + c + d = ( 20 2 k ) + ( 20 k ) + ( 20 + K ) + ( 20 + 2 k ) = 80 a+b+c+d=(20-2k)+(20-k)+(20+K)+(20+2k)=80

Truly very simple!

Mas Mus
Apr 7, 2014

Let the arithmetic progression is a , ( a + b ) , ( a + 2 b ) , ( a + 3 b ) , ( a + 4 b ) a + ( a + b ) + ( a + 2 b ) + ( a + 3 b ) + ( a + 4 b ) = 5 a + 10 b = 5 ( a + 2 b ) i t is equal with a + b + 20 + c + d = 5 ( a + 2 b ) W e know that the third term of the arithmetic progression is 20 = ( a + 2 b ) s o , a + b + 20 + c + d = 5 ( 20 ) a + b + c + d = 80 \begin{aligned} & \text{Let the arithmetic progression is }a,(a+b),(a+2b),(a+3b),(a+4b) \\ & a+(a+b)+(a+2b)+(a+3b)+(a+4b)=5a+10b=5(a+2b) \\ & it\text{ is equal with }a+b+20+c+d=5(a+2b) \\ & We\text{ know that the third term of the arithmetic progression is 20}=(a+2b) \\ & so,a+b+20+c+d=5(20) \\ & a+b+c+d=80 \\ \end{aligned}

Ruby Syuukyoku
Nov 16, 2015

To spare the agony, I just assumed it began at 0 = a and it went up 10 with each number. That would make it 0+10+30+40 Nice and easy

Nathan Capurian
Jul 5, 2015

Since the problem is ambiguous in the first place, you can take any arithmetic sequence with 20 as the 3rd term. I tried using 10 , 15, 20, 25, 30. :)

Vimala Jhansi
Jun 28, 2015

Jatin Soni
Jun 21, 2015

Let the common difference be (x) Then series will be ,b. ,20. , c. , d a , a+x, a+2x, a+3x, a+4x

Now a+2x=20 a=20-2x

Hence b= a+x= 20-2x+x = 20-x Similarly c= 20+ x d=20+2x

a+b+c+d = 20-2x+20-x+20+x+20+2x =80

(18 + 22)+(19+21)

Sushant Nagpaul
Jun 14, 2015

Since this is a ap, the mean of all the digits will be the number in the middle, do you just need to multiply it by 4 and get the solution. The other explainations are completely apt but time consuming

Great thinking !

Nathan Capurian - 5 years, 11 months ago

Let the difference between any two successive numbers in the sequence be y. Hence, b= a+y , 20= a+2y , c=a+3y and d=a+4y . So, a+b+c+d = 4a+8y or a+b+c+d= 4(a+2y)=4*20=80 .

Blaine Horne
Jun 13, 2015

A,b,20,c,d I guessed that A=0 B=10 20 C=30 D=40

Therefor a+b+c+d = 0+10+30+40 =80

Daniel Rowler
Jun 12, 2015

Yay I got it correct.

I made them all 20

I'm good at this

Daniel Rowler - 6 years ago

Great solution! :)

Nathan Capurian - 5 years, 11 months ago
Gourab Roy
Jun 12, 2015

a=18,b=19,c=21,d=22 Add them, 80.

Tze Chun Wat
Jan 3, 2015

Let d be the common difference.

a=20-2n b=20-n c=20+n d=20+2n a+b+c+d=(20-2n)+(20-n)+(20+n)+(20+2n) =20+20+20+20-2n-n+n+2n =80

Using arithmetic mean, (a+20)/2 = b; (b+c)/2=20 implies, ((a+20)/2 + c)/2)=20 and b+c=40; (20+d)/2 = c implies, (a+20+20+d)/4 = 20 implies, a+d=40. Thus a+b+c+d= (b+c) + (a+d) = 40+40=80

Siddharth Ghosh
Apr 18, 2014

a+b+20+c+d = Sum .. Also ..as there are 5 terms and 20 being the middle term..it is the average of the all the numbers..Hence total sum must be 5*20 = 100 and thus a+b+c+d = 100-20 = 80

Using the AP properties we have:

The 1st term is a \Rightarrow in this promblem is a .

The 2nd term is a + d a+d \Rightarrow in this promblem is b .

The 3rd term is a + 2 d a+2d \Rightarrow in this promblem is 20

The 4th term is a + 3 d a+3d \Rightarrow in this promblem is c .

The 5th term is a + 4 d a+4d \Rightarrow in this promblem is d .

If we make a + b + c + d a+b+c+d , we get 4 a + 8 d 4a+8d .

4 a + 8 d 4a+8d is 4 times more higher than the 3nd term a + 2 d a+2d regardless of the progression.

Therefore the answer is 80.

I forget to say: d is the commom diference

Victor Paes Plinio - 7 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...