Is that too big?

Algebra Level 2

Solve for x x in the given expression:

1 1 1 x + 1 2 + 1 1 x + 1 2 + 1 1 1 x 1 2 + 1 1 x 1 2 = 4 3 \Large\frac{1}{\frac{1}{\frac{1}{x}+\frac{1}{2}}+\frac{1}{ \frac{1}{x}+\frac{1}{2}}}+\frac{1}{\frac{1}{\frac{1}{x}-\frac{1}{2}}+\frac{1}{\frac{1}{x}-\frac{1}{2}}}=\frac{4}{3}

If the solution is A B \frac{A}{B} , where A A and B B are coprime positive integers, then what is A + B A+B ?


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jun 19, 2018

1 1 1 x + 1 2 + 1 1 x + 1 2 + 1 1 1 x 1 2 + 1 1 x 1 2 = 4 3 1 2 1 x + 1 2 + 1 2 1 x 1 2 = 4 3 1 2 2 + x 2 x + 1 2 2 x 2 x = 4 3 1 4 x 2 + x + 1 4 x 2 x = 4 3 2 + x + 2 x 4 x = 4 3 4 4 x = 4 3 1 x = 4 3 x = 3 4 \begin{aligned} \frac 1{\frac 1{\frac 1x+\frac 12} + \frac 1{\frac 1x+\frac 12}} + \frac 1{\frac 1{\frac 1x-\frac 12} + \frac 1{\frac 1x-\frac 12}} & = \frac 43 \\ \frac 1{\frac 2{\frac 1x+\frac 12}} + \frac 1{\frac 2{\frac 1x-\frac 12}} & = \frac 43 \\ \frac 1{\frac 2{\frac {2+x}{2x}}} + \frac 1{\frac 2{\frac {2-x}{2x}}} & = \frac 43 \\ \frac 1{\frac {4x}{2+x}} + \frac 1{\frac {4x}{2-x}} & = \frac 43 \\ \frac {2+x+2-x}{4x} & = \frac 43 \\ \frac 4{4x} & = \frac 43 \\ \frac 1x & = \frac 43 \\ \implies x & = \frac 34 \end{aligned}

Therefore, A + B = 3 + 4 = 7 A+B = 3+4 = \boxed{7} .

X X
Jun 18, 2018

By simplfying,we get 1 x = 4 3 , x = 3 4 \dfrac1x=\dfrac43,x=\dfrac34

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...