Is That Too Much to Calculate? (3)

Calculus Level 3

Let t = 2018 t=2018 and p = ln 2 p=\ln 2 .

Evaluate in closed form the following:

k = 1 ( 1 n = 0 k 1 e t t n n ! ) ( 1 p ) k 1 p \sum_{k=1}^{\infty}\left(1-\sum_{n=0}^{k-1}\frac{e^{-t }t^n}{n!}\right)(1-p)^{k-1}p

2 1 2 2019 2-\frac{1}{2^{2019}} 2 1 2 2018 2- \frac{1}{2^{2018}} 1 1 2 2019 1- \frac {1}{2^{2019}} 1 1 2 2018 1-\frac 1{2^{2018}} 1 1 2 2017 1-\frac{1}{2^{2017}}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Brian Moehring
Aug 21, 2018

First note that 1 n = 0 k 1 e t t n n ! = e t ( e t n = 0 k 1 t n n ! ) = e t n = k t n n ! 1 - \sum_{n=0}^{k-1}\frac{e^{-t}t^n}{n!} = e^{-t}\left(e^t - \sum_{n=0}^{k-1} \frac{t^n}{n!}\right) = e^{-t}\sum_{n=k}^\infty \frac{t^n}{n!} so that k = 1 ( 1 n = 0 k 1 e t t n n ! ) ( 1 p ) k 1 p = e t k = 1 ( n = k t n n ! ) ( 1 p ) k 1 p = e t 1 k n ( t n n ! ( 1 p ) k 1 p ) = e t n = 1 t n n ! k = 1 n ( 1 p ) k 1 p = e t n = 1 t n n ! ( 1 ( 1 p ) n ) = e t ( ( n = 1 t n n ! ) ( n = 1 ( t ( 1 p ) ) n n ! ) ) = e t ( ( e t 1 ) ( e t ( 1 p ) 1 ) ) = 1 e t p \begin{aligned} \sum_{k=1}^\infty \left(1-\sum_{n=0}^{k-1}\frac{e^{-t}t^n}{n!}\right)\big(1-p\big)^{k-1}p &= e^{-t}\sum_{k=1}^\infty \left(\sum_{n=k}^\infty \frac{t^n}{n!}\right)\big(1-p\big)^{k-1}p \\ &= e^{-t}\sum_{1 \leq k \leq n} \left(\frac{t^n}{n!} \cdot (1-p)^{k-1}p\right) \\ &= e^{-t}\sum_{n=1}^\infty \frac{t^n}{n!} \sum_{k=1}^n (1-p)^{k-1}p \\ &= e^{-t}\sum_{n=1}^\infty \frac{t^n}{n!} \cdot \big(1 - (1-p)^n\big) \\ &= e^{-t}\left(\left(\sum_{n=1}^\infty \frac{t^n}{n!}\right) - \left(\sum_{n=1}^\infty \frac{\big(t(1-p)\big)^n}{n!}\right)\right) \\ &= e^{-t}\left(\left(e^t - 1\right) - \left(e^{t(1-p)} - 1\right)\right) \\ &= 1 - e^{-tp} \end{aligned}

Setting t = 2018 t=2018 and p = ln 2 p=\ln 2 yields the answer of 1 e 2018 ln 2 = 1 ( 1 2 ) 2018 1 - e^{-2018\ln 2} = 1 - \left(\frac{1}{2}\right)^{2018}

Chew-Seong Cheong
Aug 26, 2018

S = k = 1 ( 1 n = 0 k 1 e t t n n ! ) ( 1 p ) k 1 p = p k = 1 ( 1 p ) k 1 p e t k = 1 ( 1 p ) k 1 n = 0 k 1 t n n ! = p k = 0 ( 1 p ) k p e t ( 1 + ( 1 p ) ( 1 + t ) + ( 1 p ) 2 ( 1 + t + t 2 2 ! ) + ( 1 p ) 3 ( 1 + t + t 2 2 ! + t 3 3 ! ) + ) = p 1 ( 1 p ) p e t ( 1 0 ! n = 0 ( 1 p ) n + t 1 ! n = 1 ( 1 p ) n + t 2 2 ! n = 2 ( 1 p ) n + t 3 3 ! n = 3 ( 1 p ) n + ) = 1 p e t ( 1 0 ! p + ( 1 p ) t 1 ! p + ( 1 p ) 2 t 2 2 ! p + ( 1 p ) 3 t 3 3 ! p + ) = 1 e t e ( 1 p ) t = 1 e t + t p t = 1 e p t = 1 1 e 2018 ln 2 = 1 1 2 2018 \begin{aligned} S & = \sum_{k=1}^\infty \left(1-\sum_{n=0}^{k-1}\frac {e^{-t}t^n}{n!}\right) (1-p)^{k-1}p \\ & = p\sum_{\color{#3D99F6}k=1}^\infty (1-p)^{\color{#3D99F6}k-1} - pe^{-t} \sum_{k=1}^\infty (1-p)^{k-1} \sum_{n=0}^{k-1}\frac {t^n}{n!} \\ & = p\sum_{\color{#D61F06}k=0}^\infty (1-p)^{\color{#D61F06}k} - pe^{-t} \left(1+(1-p)(1+t) + (1-p)^2 \left(1+t+\frac {t^2}{2!} \right) + (1-p)^3 \left(1+t+\frac {t^2}{2!} + \frac {t^3}{3!} \right) + \cdots \right) \\ & = \frac p{1-(1-p)} - pe^{-t} \left(\frac 1{0!} \sum_{n=0}^\infty (1-p)^n + \frac t{1!} \sum_{n=1}^\infty (1-p)^n + \frac {t^2}{2!} \sum_{n=2}^\infty (1-p)^n + \frac {t^3}{3!} \sum_{n=3}^\infty (1-p)^n + \cdots \right) \\ & = 1 - pe^{-t} \left(\frac 1{0!p} + \frac {(1-p)t}{1!p} + \frac {(1-p)^2t^2}{2!p} + \frac {(1-p)^3t^3}{3!p} + \cdots \right) \\ & = 1 - e^{-t} e^{(1-p)t} = 1 - e^{-t+t-pt} = 1 - e^{-pt} = 1 - \frac 1{e^{2018\ln 2}} = \boxed{1-\dfrac 1{2^{2018}}} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...