A geometry problem by Vaibhav Prasad

Geometry Level 3

cot 4 π 7 cot 8 π 7 cot 8 π 7 cot 12 π 7 cot 12 π 7 cot 4 π 7 = ? \large \cot { \frac { 4\pi }{ 7 } } \cot { \frac { 8\pi }{ 7 } } -\cot { \frac { 8\pi }{ 7 } } \cot { \frac { 12\pi }{ 7 } } -\cot { \frac { 12\pi }{ 7 } } \cot { \frac { 4\pi }{ 7 } } = \ ?


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jul 18, 2015

cot 4 π 7 cot 8 π 7 cot 8 π 7 cot 12 π 7 cot 12 π 7 cot 4 π 7 = cot 4 π 7 cot 8 π 7 cot 12 π 7 ( tan 12 π 7 tan 4 π 7 tan 8 π 7 ) = tan 12 π 7 tan 4 π 7 tan 8 π 7 tan 4 π 7 tan 8 π 7 tan 12 π 7 = tan 2 π 7 tan 4 π 7 tan π 7 tan 4 π 7 tan π 7 tan 2 π 7 = tan π 7 + tan 2 π 7 + tan 4 π 7 tan π 7 tan 2 π 7 tan 4 π 7 = 1 See Note \cot{\dfrac{4\pi}{7}}\cot{\dfrac{8\pi}{7}} - \cot{\dfrac{8\pi}{7}}\cot{\dfrac{12\pi}{7}} - \cot{\dfrac{12\pi}{7}}\cot{\dfrac{4\pi}{7}} \\ = \cot{\dfrac{4\pi}{7}} \cot{\dfrac{8\pi}{7}} \cot{\dfrac{12\pi}{7}} \left( \tan{\dfrac{12\pi}{7}} - \tan{\dfrac{4\pi}{7}} - \tan{\dfrac{8\pi}{7}} \right) \\ = \dfrac {\tan{\color{#D61F06}{\dfrac{12\pi}{7}}} - \tan{\dfrac{4\pi}{7}} - \tan{\color{#3D99F6}{\dfrac{8\pi}{7}}}} {\tan{\dfrac{4\pi}{7}} \tan{\color{#3D99F6}{\dfrac{8\pi}{7}}} \tan{\color{#D61F06}{\dfrac{12\pi}{7}}}} \\ = \dfrac {\color{#D61F06}{-}\tan{\color{#D61F06}{\dfrac{2\pi}{7}}} - \tan{\dfrac{4\pi}{7}} - \tan{\color{#3D99F6}{\dfrac{\pi}{7}}}} {\color{#D61F06}{-} \tan{\dfrac{4\pi}{7}} \tan{\color{#3D99F6}{\dfrac{\pi}{7}}} \tan{\color{#D61F06}{\dfrac{2\pi}{7}}}} \\ = \dfrac {\tan{\dfrac{\pi}{7}} + \tan{\dfrac{2\pi}{7}} + \tan{\dfrac{4\pi}{7}}} {\tan{\dfrac{\pi}{7}} \tan{\dfrac{2\pi}{7}} \tan{\dfrac{4\pi}{7}}} = \boxed{1} \quad \quad \color{#D61F06} {\text{See Note}}

Note: \color{#D61F06} {\text{Note: }} Since π 7 + 2 π 7 + 4 π 7 = π \frac{\pi}{7} + \frac{2\pi}{7} + \frac{4\pi}{7} = \pi , angles of a triangle. tan π 7 + tan 2 π 7 + tan 4 π 7 = tan π 7 tan 2 π 7 tan 4 π 7 \Rightarrow \tan{\frac{\pi}{7}} + \tan{\frac{2\pi}{7}} + \tan{\frac{4\pi}{7}} = \tan{\frac{\pi}{7}} \tan{\frac{2\pi}{7}} \tan{\frac{4\pi}{7}}

Moderator note:

Converting it into functions of π 7 , 2 π 7 , 4 π 7 \frac{\pi}{7} , \frac{2\pi}{7} , \frac{4\pi}{7} would make it easier to come to the conclusion, esp for those who already know that

cot α cot β + cot β cot γ + cot γ cot α = 1 \cot \alpha \cot \beta + \cot \beta \cot \gamma + \cot \gamma \cot \alpha = 1

汶良 林
Jul 24, 2015

α + β + γ = 3π/2

tan(α + β) = tan(3π/2 - γ)

(tanα + tanβ)/(1 - tanαtanβ ) = 1/tanγ

tanαtanβ + tanβtanγ + tanγtanα = 1

cot(4π/7)cot(8π/7)-cot(8π/7)cot(12π/7)-cot(12π/7)cot(4π/7)

= tan(13π/14)tan(5π/14)+tan(5π/14)tan(3π/14)+tan(3π/14)tan(13π/7)

= 1

13π/14 + 5π/14 + 3π/14 = 3π/2

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...