Is the answer complex?

Calculus Level 2

Let y = x + 12 x 36 . y = \sqrt{x+\sqrt{12x-36}}.

The value of d y d x \frac{dy}{dx} at x = 4 x = 4 can be expressed as m n , \frac{m}{n}, where m m and n n are coprime positive integers.

Find the value of m + n . m+n.


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Feb 10, 2015

y = x + 12 x 36 y 2 = x + 12 x 36 y = \sqrt{x+\sqrt{12x-36}}\quad \Rightarrow y^2 = x + \sqrt{12x-36}

2 y d y d x = 1 + 1 2 ( 12 x 36 ) 1 2 ( 12 ) = 1 + 6 12 x 36 \Rightarrow 2y\dfrac {dy}{dx} = 1 + \dfrac {1}{2} (12x-36)^{-\frac{1}{2}} (12) = 1 + \dfrac {6}{\sqrt{12x-36}}

When x = 4 x = 4

y = 4 + 48 36 = 4 + 2 3 = ( 1 + 3 ) 2 = 1 + 3 \Rightarrow y = \sqrt{4+\sqrt{48-36}} = \sqrt{4+2\sqrt{3}} = \sqrt{(1+\sqrt{3})^2} = 1 + \sqrt{3}

Therefore,

2 y d y d x = 1 + 6 12 x 36 \Rightarrow 2y\dfrac {dy}{dx} = 1 + \dfrac {6}{\sqrt{12x-36}}

2 ( 1 + 3 ) d y d x = 1 + 6 12 = 1 + 3 \Rightarrow 2(1+\sqrt{3} )\dfrac {dy}{dx} = 1 + \dfrac {6}{\sqrt{12}} = 1+\sqrt{3}

d y d x = 1 2 m + n = 1 + 2 = 3 \Rightarrow \dfrac {dy}{dx} = \dfrac {1}{2} \quad \Rightarrow m+n = 1 + 2 = \boxed{3}

Harsh Shrivastava
Feb 10, 2015

y = x + 12 x 36 y = \sqrt{x+\sqrt{12x-36}}

\implies y = ( x 3 ) 2 + 3 2 + 2 3 x 9 y = \sqrt{\sqrt{(x-3)}^2+\sqrt{3}^2+2\sqrt{3x-9}}

It is in the form of ( a 2 + b 2 + 2 a b a^2 + b^2 + 2ab ) which is equal to ( a + b ) 2 (a+b)^2 \implies y = ( x 3 + 3 y = (\sqrt{x-3} + \sqrt{3} )

Now it is easy to differentiate y y .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...