Is their finite such matrices?

Algebra Level 5

The number of non-zero diagonal matrices of order 4 satisfying A 2 = A A^2 = A is

None of these 4 11 2 16 0 Infinite 15

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rishabh Jain
Jan 5, 2016

Let A = [ a 0 0 0 0 b 0 0 0 0 c 0 0 0 0 d ] A= \begin{bmatrix}{a} && {0} && {0} && {0} \\ {0} && {b} && {0} && {0} \\ {0} && {0} && {c} && {0} \\ {0} && {0} && {0} && {d} \\ \end{bmatrix} A 2 = A A = [ a 2 0 0 0 0 b 2 0 0 0 0 c 2 0 0 0 0 d 2 ] A^2=AA= \begin{bmatrix}{a^2} && {0} && {0} && {0} \\ {0} && {b^2} && {0} && {0} \\ {0} && {0} && {c^2} && {0} \\ {0} && {0} && {0} && {d^2} \\ \end{bmatrix} A = A 2 a = a 2 , b = b 2 , c = c 2 , d = d 2 A=A^2 \Rightarrow a=a^2,b=b^2,c=c^2,d=d^2 a,b,c,d = 0 o r 1 \color{#3D99F6}{ \Rightarrow \text{ a,b,c,d}=0 \space or\space 1} Therefore total number of matrices= 2 × 2 × 2 × 2 = 16 2\times2\times2\times2=16 But this also contains the Zero matrix. Therefore answer= 16 1 = 15 \color{#D61F06}{16-1=15}

Awsome.. + 1 +1 \uparrow

Akhil Bansal - 5 years, 5 months ago

Log in to reply

Thanks \huge\color{#69047E}{\text{Thanks}}

Rishabh Jain - 5 years, 5 months ago

NICEEE...+1!!!!

rajdeep brahma - 3 years ago

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...