sin − 1 ( sin 1 0 ∘ + sin 5 0 ∘ )
What is the value of the above expression in degrees?
The answer must be between -90 and 90.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Using the identity sin ( a ) + sin ( b ) = 2 sin ( 2 a + b ) cos ( 2 a − b ) with a = 5 0 ∘ and b = 1 0 ∘ yields that
sin ( 5 0 ∘ ) + sin ( 1 0 ∘ ) = 2 sin ( 3 0 ∘ ) cos ( 2 0 ∘ ) = sin ( 7 0 ∘ ) ,
since sin ( 3 0 ∘ ) = 2 1 and cos ( θ ) = sin ( 9 0 ∘ − θ ) .
Taking the range of the sin − 1 function as [ − 9 0 ∘ , 9 0 ∘ ] , we obtain a final answer of 7 0 .
Perfect solution!
sin 1 0 ° + sin 5 0 ° = sin 1 0 ° + sin ( 6 0 ° − 1 0 ° )
= sin 1 0 ° + 2 3 cos 1 0 ° − 2 1 sin 1 0 °
= 2 3 cos 1 0 ° + 2 1 sin 1 0 °
= sin ( 6 0 ° + 1 0 ° ) = sin 7 0 °
so sin − 1 ( sin 1 0 ° + sin 5 0 ° ) = 7 0 °
Problem Loading...
Note Loading...
Set Loading...
Let θ = sin − 1 ( sin 1 0 ∘ + sin 5 0 ∘ ) , then we have:
sin θ ⟹ θ = sin 1 0 ∘ + sin 5 0 ∘ = sin ( 3 0 − 2 0 ) ∘ + sin ( 3 0 + 2 0 ) ∘ = sin 3 0 ∘ cos 2 0 ∘ − cos 3 0 ∘ sin 2 0 ∘ + sin 3 0 ∘ cos 2 0 ∘ + cos 3 0 ∘ sin 2 0 ∘ = 2 sin 3 0 ∘ cos 2 0 ∘ = 2 ( 2 1 ) cos 2 0 ∘ = cos 2 0 ∘ = sin ( 9 0 − 2 0 ) ∘ = sin 7 0 ∘ = 7 0 ∘