Is there a formula for this?

Geometry Level 3

sin 1 ( sin 1 0 + sin 5 0 ) \large \sin^{-1} (\sin 10^{\circ} + \sin 50^{\circ})

What is the value of the above expression in degrees?

The answer must be between -90 and 90.


The answer is 70.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Aug 29, 2016

Let θ = sin 1 ( sin 1 0 + sin 5 0 ) \theta = \sin^{-1} (\sin 10^\circ + \sin 50^\circ) , then we have:

sin θ = sin 1 0 + sin 5 0 = sin ( 30 20 ) + sin ( 30 + 20 ) = sin 3 0 cos 2 0 cos 3 0 sin 2 0 + sin 3 0 cos 2 0 + cos 3 0 sin 2 0 = 2 sin 3 0 cos 2 0 = 2 ( 1 2 ) cos 2 0 = cos 2 0 = sin ( 90 20 ) = sin 7 0 θ = 70 \begin{aligned} \sin \theta & = \sin 10^\circ + \sin 50^\circ \\ & = \sin (30-20)^\circ + \sin (30+20)^\circ \\ & = \sin 30^\circ \cos 20^\circ - \cos 30^\circ \sin 20^\circ + \sin 30^\circ \cos 20^\circ + \cos 30^\circ \sin 20^\circ \\ & = 2\sin 30^\circ \cos 20^\circ \\ & = 2 \left(\frac 12 \right) \cos 20^\circ \\ & = \cos 20^\circ = \sin (90 - 20)^\circ = \sin 70^\circ \\ \implies \theta & = \boxed{70}^\circ \end{aligned}

Using the identity sin ( a ) + sin ( b ) = 2 sin ( a + b 2 ) cos ( a b 2 ) \sin(a) + \sin(b) = 2\sin\left(\dfrac{a + b}{2}\right)\cos\left(\dfrac{a - b}{2}\right) with a = 5 0 a = 50^{\circ} and b = 1 0 b = 10^{\circ} yields that

sin ( 5 0 ) + sin ( 1 0 ) = 2 sin ( 3 0 ) cos ( 2 0 ) = sin ( 7 0 ) \sin(50^{\circ}) + \sin(10^{\circ}) = 2\sin(30^{\circ})\cos(20^{\circ}) = \sin(70^{\circ}) ,

since sin ( 3 0 ) = 1 2 \sin(30^{\circ}) = \dfrac{1}{2} and cos ( θ ) = sin ( 9 0 θ ) \cos(\theta) = \sin(90^{\circ} - \theta) .

Taking the range of the sin 1 \sin^{-1} function as [ 9 0 , 9 0 ] [-90^{\circ}, 90^{\circ}] , we obtain a final answer of 70 \boxed{70} .

Perfect solution!

Sharky Kesa - 4 years, 9 months ago
Ujjwal Rane
Sep 11, 2016

sin 10 ° + sin 50 ° = sin 10 ° + sin ( 60 ° 10 ° ) \sin 10° + \sin 50° = \sin 10° + \sin(60°-10°)

= sin 10 ° + 3 2 cos 10 ° 1 2 sin 10 ° = \sin 10° + \frac{\sqrt{3}}{2} \cos 10° - \frac{1}{2} \sin 10°

= 3 2 cos 10 ° + 1 2 sin 10 ° = \frac{\sqrt{3}}{2} \cos 10° + \frac{1}{2} \sin 10°

= sin ( 60 ° + 10 ° ) = sin 70 ° = \sin (60° + 10°) = \sin 70°

so sin 1 ( sin 10 ° + sin 50 ° ) = 70 ° \sin^{-1} (\sin 10° + \sin 50°) = 70°

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...