Is there a sequence here? (no)

Geometry Level 3

A B C D ABCD is a cyclic quadrilateral where A B = 1 , B C = 4 , C D = 9 AB = 1, BC= 4, CD = 9 . O O is the circumcenter. A O D AOD is a diameter. What is A D AD ? Submit A D 10 4 \lfloor{AD}\cdot{10}^4\rfloor


The answer is 102482.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Let x x be the diameter’s length. A B D \triangle ABD and A C D \triangle ACD are right triangles. Using Pythagorean theorem on them we have

B D = A D 2 A B 2 B D = x 2 1 BD=\sqrt{A{{D}^{2}}-A{{B}^{2}}}\Rightarrow BD=\sqrt{{{x}^{2}}-1} and

A C = A D 2 C D 2 A C = x 2 81 AC=\sqrt{A{{D}^{2}}-C{{D}^{2}}}\Rightarrow AC=\sqrt{{{x}^{2}}-81}

By Ptolemy’s theorem on cyclic quadrilateral A B C D ABCD , A C B D = A B C D + B C A D x 2 81 x 2 1 = 1 × 9 + 4 x ( x 2 81 ) ( x 2 1 ) = ( 9 + 4 x ) 2 x 4 98 x 2 72 x = 0 x > 0 x 3 98 x 72 = 0 \begin{aligned} AC\cdot BD=AB\cdot CD+BC\cdot AD & \Leftrightarrow \sqrt{{{x}^{2}}-81}\cdot \sqrt{{{x}^{2}}-1}=1\times 9+4x \\ & \Leftrightarrow \left( {{x}^{2}}-81 \right) \left( {{x}^{2}}-1 \right)={{\left( 9+4x \right)}^{2}} \\ & \Leftrightarrow {{x}^{4}}-98{{x}^{2}}-72x=0 \\ & \overset{x>0}{\mathop{\Leftrightarrow }}\,{{x}^{3}}-98x-72=0 \\ \end{aligned} This cubic has one positive solution, x 10.2482009806474 x\approx 10.2482009806474 .

For the answer, A D 10 4 = 102482 \left\lfloor AD\cdot {{10}^{4}} \right\rfloor =\boxed{102482} .

David Vreken
Dec 31, 2020

Method 1

Let A D = x AD = x and draw B D BD . By Thales's Theorem , A B D = 90 ° \angle ABD = 90° , so that B D = x 2 1 BD = \sqrt{x^2 - 1} , sin A = x 2 1 x \sin A = \frac{\sqrt{x^2 - 1}}{x} , and tan A = x 2 1 \tan A = \sqrt{x^2 - 1} .

As a cyclic quadrilateral , opposite angles are supplementary, so sin A = sin D \sin A = \sin D .

The area of the quadrilateral is then A A B C D = A A B D + A B C D = 1 2 x sin A + 1 2 36 sin D = 1 2 x ( x + 36 ) x 2 1 A_{ABCD} = A_{\triangle ABD} + A_{\triangle BCD} = \frac{1}{2} x \sin A + \frac{1}{2} 36 \sin D = \frac{1}{2x}(x + 36) \sqrt{x^2 - 1} .

The area of the quadrilateral is also given by A A B C D = 1 4 ( a 2 b 2 c 2 + d 2 ) tan A = 1 4 ( 1 2 4 2 9 2 + x 2 ) x 2 1 = 1 4 ( x 2 96 ) x 2 1 A_{ABCD} = \frac{1}{4}(a^2 - b^2 - c^2 + d^2)\tan A = \frac{1}{4}(1^2 - 4^2 - 9^2 + x^2) \sqrt{x^2 - 1} = \frac{1}{4}(x^2 - 96) \sqrt{x^2 - 1} .

Therefore, A A B C D = 1 2 x ( x + 36 ) x 2 1 = 1 4 ( x 2 96 ) x 2 1 A_{ABCD} = \frac{1}{2x}(x + 36) \sqrt{x^2 - 1} = \frac{1}{4}(x^2 - 96) \sqrt{x^2 - 1} , which rearranges to x 3 98 x 72 = 0 x^3 -98x - 72 = 0 and solves to x 10.2482 x \approx 10.2482 for x > 0 x > 0 and x 1 x \neq 1 .

Therefore, A D 1 0 4 = 102482 \lfloor AD \cdot 10^4 \rfloor = \boxed{102482} .


Method 2

Let a = A B = 1 a = AB = 1 , b = B C = 4 b = BC = 4 , c = C D = 9 c = CD = 9 , and d = A B = x d = AB = x .

By Parameshvara's Theorem , R = 1 4 ( a b + c d ) ( a c + b d ) ( a d + b c ) ( s a ) ( s b ) ( s c ) ( s d ) R = \cfrac{1}{4}\sqrt{\cfrac{(ab + cd)(ac + bd)(ad + bc)}{(s - a)(s - b)(s - c)(s - d)}} , or x 2 = 1 4 ( 4 + 9 x ) ( 9 + 4 x ) ( x + 36 ) 1 16 ( x + 14 ) ( x + 12 ) ( x + 6 ) ( x 4 ) \cfrac{x}{2} = \cfrac{1}{4}\sqrt{\cfrac{(4 + 9x)(9 + 4x)(x + 36)}{\frac{1}{16}(-x + 14)(x + 12)(x + 6)(x - 4)}} .

This expands to x 6 196 x 4 144 x 3 + 9604 x 2 + 14112 x + 5184 = 0 x^6 - 196 x^4 - 144 x^3 + 9604 x^2 + 14112 x + 5184 = 0 .

Taking the square root of both sides gives x 3 98 x 72 = 0 x^3 -98x - 72 = 0 which solves to x 10.2482 x \approx 10.2482 for x > 0 x > 0 .

Therefore, A D 1 0 4 = 102482 \lfloor AD \cdot 10^4 \rfloor = \boxed{102482} .

Pi Han Goh
Dec 31, 2020

Let θ \color{#20A900}{\theta} denote the measure of the angle A B C \color{#20A900}{\angle ABC} .

Since A B C D ABCD is a cyclic quadrilateral, we have A D C = 18 0 θ { \color{#69047E}{\angle ADC}} = {\color{#69047E}{180^\circ - \theta}} .
A O C = 2 × A C D = 36 0 2 θ { \color{#3D99F6}{\angle AOC} }= 2\times \angle ACD = { \color{#3D99F6}{360^\circ- 2\theta}} .
Thus, C O D = 18 0 A O C = 2 θ 18 0 > 0 {\color{#EC7300}{ \angle COD}} = 180^\circ - \angle AOC ={\color{#EC7300}{ 2\theta - 180^\circ}} > 0 .
And so, 9 0 < θ < 18 0 90^\circ < \theta < 180^\circ .


And let r r denote the radius of the circle. We want to find the diameter A D = 2 r AD = 2r .

Apply cosine rule on C O D \triangle COD , 2 r 2 2 r 2 cos ( 2 θ 18 0 ) = 9 2 2 r 2 ( 1 + cos ( 2 θ ) = 2 cos 2 θ ) = 81 r cos θ = 9 2 ( cos θ < 0 ) 2r^2 - 2r^2 \cos(2\theta - 180^\circ) = 9^2 \quad \Leftrightarrow \quad 2r^2( \underbrace{1 + \cos(2\theta)}_{=2\cos^2\theta}) = 81 \quad \Leftrightarrow \quad r \cos \theta = -\frac92 \quad (\because \cos\theta < 0)

Similarly, apply cosine rule on A B C \triangle ABC , ( A C ) 2 = 1 2 + 4 2 2 1 4 cos θ = 17 8 cos θ (AC)^2 = 1^2 + 4^2 - 2\cdot 1 \cdot 4 \cos \theta = 17 - 8\cos\theta

Likewise, apply cosine rule on A O C \triangle AOC , ( A C ) 2 = 2 r 2 ( 1 cos ( 36 0 2 θ ) = 1 cos ( 2 θ ) = 2 sin 2 θ ) = 4 r 2 sin 2 θ = 4 r 2 4 r 2 cos 2 θ = 4 r 2 4 ( 9 2 ) 2 = 4 r 2 81 (AC)^2 = 2r^2 \Big(\underbrace{1 - \cos(360^\circ - 2\theta)}_{=1-\cos(2\theta)=2\sin^2\theta} \Big) =4r^2 \sin^2\theta = 4r^2 - 4r^2 \cos^2 \theta = 4r^2 - 4 \left( -\frac92 \right) ^2 = 4r^2 - 81

Comparing the last two equations above, 17 8 cos θ = 4 r 2 81 17 r 8 r cos θ = 4 r 3 81 r 17 r 8 ( 9 2 ) = 4 r 3 81 r 2 r 3 49 r 18 = 0 \begin{array} { r c l } 17 - 8\cos \theta &=& 4r^2 - 81 \\ 17r - 8r \cos \theta &=& 4r^3 - 81r \\ 17r - 8(-\tfrac 92) &=& 4r^3 - 81r \\ 2r^3 - 49r - 18 &=& 0 \end{array}

Thus, r 5.12141 r \approx 5.12141 . The answer is A D 1 0 4 = 102482 \lfloor AD \cdot 10^4 \rfloor = \boxed{102482} .

nice approach!

Fletcher Mattox - 5 months, 1 week ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...