Is there a simple way?

p prime 1 p 2 q prime q < p q 2 1 q 2 \sum_{p \text{ prime}} \frac{1}{p^2} \underset{q < p}{\prod_{ q \text{ prime}}} \frac{q^2-1}{q^2}

If this sum can be represented as a b c π d \displaystyle a - \frac{b}{c\pi^d} , with b b and c c coprime. Input the value of a + b + c + d a + b + c + d .

Bonus: Generalize by replacing the 2 2 in the exponent by n n

Clarification: When no q q satisfies the conditions in the product, i.e. when p = 2 p = 2 , suppose the product is 1 1

Maybe try this next: There is a simple way


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Mark Hennings
Aug 15, 2019

The term 1 p 2 q < p q 2 1 q 2 \frac{1}{p^2}\prod_{q <p} \frac{q^2-1}{q^2} is equal to the sum of all terms of the form ( 1 ) k 1 p 1 2 p 2 2 p k 2 \frac{(-1)^{k-1}}{p_1^2p_2^2 \cdots p_k^2} where p 1 , p 2 , . . . , p k p_1,p_2,...,p_k are prime and p 1 < p 2 < < p k = p p_1 < p_2 < \cdots < p_k=p . Thus the required sum is equal to p 1 p 2 q < p q 2 1 q 2 = 1 p ( 1 1 p 2 ) = 1 ζ ( 2 ) 1 = 1 6 π 2 \sum_p \frac{1}{p^2}\prod_{q < p}\frac{q^2-1}{q^2} \; = \; 1 - \prod_p \left(1 - \frac{1}{p^2}\right) \; = \; 1 - \zeta(2)^{-1} \; = \; 1 - \frac{6}{\pi^2} making the answer 1 + 6 + 1 + 2 = 10 1 + 6 + 1 + 2 = \boxed{10} .

There is just a little typo, products became sums...

Théo Leblanc - 1 year, 9 months ago

Log in to reply

Thanks... fixed.

Mark Hennings - 1 year, 9 months ago
Théo Leblanc
Aug 17, 2019

I will denote by p n p_n the n t h n^{th} prime number, m N m\in\mathbb{N}^* .

n = 1 N 1 p n m k < n ( 1 1 p k m ) = n = 1 N ( 1 1 p n m ) k < n ( 1 1 p k m ) + n = 1 N k < n ( 1 1 p k m ) = n = 2 N + 1 k < n ( 1 1 p k m ) + n = 1 N k < n ( 1 1 p k m ) = k < 1 ( 1 1 p k m ) k < N + 1 ( 1 1 p k m ) = 1 k < N + 1 ( 1 1 p k m ) \begin{aligned} \displaystyle\sum_{n=1}^{N} \frac{1}{p_n^m} \displaystyle\prod_{k<n}(1-\frac{1}{p_k^m}) &= -\displaystyle\sum_{n=1}^{N} (1-\frac{1}{p_n^m}) \displaystyle\prod_{k<n}(1-\frac{1}{p_k^m}) + \displaystyle\sum_{n=1}^{N} \displaystyle\prod_{k<n}(1-\frac{1}{p_k^m}) \\ & = -\displaystyle\sum_{n=2}^{N+1} \displaystyle\prod_{k<n}(1-\frac{1}{p_k^m}) +\displaystyle\sum_{n=1}^{N} \displaystyle\prod_{k<n}(1-\frac{1}{p_k^m}) \\ & = \displaystyle\prod_{k<1}(1-\frac{1}{p_k^m})-\displaystyle\prod_{k<N+1}(1-\frac{1}{p_k^m})\\ & = 1-\displaystyle\prod_{k<N+1}(1-\frac{1}{p_k^m}) \end{aligned}

Therefore,

n = 1 N 1 p n m k < n ( 1 1 p k m ) N + 1 1 ζ ( m ) ie , n = 1 + 1 p n m k < n ( 1 1 p k m ) = 1 1 ζ ( m ) \displaystyle\sum_{n=1}^{N} \frac{1}{p_n^m} \displaystyle\prod_{k<n}(1-\frac{1}{p_k^m})\underset{N\to +\infty}{\longrightarrow} 1-\frac{1}{\zeta(m)}\\ \text{ie}, \ \boxed{\displaystyle\sum_{n=1}^{+\infty} \frac{1}{p_n^m} \displaystyle\prod_{k<n}(1-\frac{1}{p_k^m}) = 1-\frac{1}{\zeta(m)}}

Alapan Das
Aug 16, 2019

After breaking the summation we easily can note a very familiar series. p r i m e s 1 p 2 q < p ( q 2 1 q 2 ) \sum_{primes} \frac{1}{p^2} \prod_{q <p} (\frac{q^2-1}{q^2})

= 1 2 2 + 1 3 2 1 2 2 3 2 1 5 2 1 2 2 5 2 1 3 2 5 2 + 1 2 2 3 2 5 2 . . . . = =\frac{1}{2^2} +\frac{1}{3^2} - \frac{1}{{2^2}{3^2}} - \frac{1}{5^2} -\frac{1}{{2^2}{5^2}} -\frac{1}{{3^2}{5^2}} +\frac{1}{{2^2}{3^2}{5^2}} -....=

p 1 p 2 p , q 1 p 2 q 2 + p , q , r 1 p 2 q 2 r 2 . . . . \sum_{p} \frac{1}{p^2} - \sum_{p ,q} \frac{1}{{p^2}{q^2}}+\sum_{p,q,r} \frac{1}{{p^2}{q^2}{r^2}}-.... .

And this equals to

1 p r i m e s ( 1 1 p 2 ) = 1 1 ζ ( 2 ) = 1 6 π 2 1-\prod_{primes} (1-\frac{1}{p^2}) =1- \frac{1}{\zeta(2)}=1-\frac{6}{π^2}

So, a = 1 , b = 6 , c = 1 , d = 2 a=1,b=6, c=1, d=2 .

So, a + b + c + d = 10 a+b+c+d=10 .

[ p , q , r . . . . p,q,r.... denote primes].

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...