Is there any relationship to the Gaussian integral?

Calculus Level 4

The Gaussian integral states that + e x 2 d x = π \displaystyle \int_{-\infty}^{+\infty} e^{-x^2 } \, dx = \sqrt{\pi } .

Given that information (if it is related to the problem at hand), evaluate

+ x 2 e x 4 d x \int_{- \infty}^{+ \infty} x^{2} e^{-x^4} \, dx

If the integral above can be represented in the form

a b Γ ( c d ) , \dfrac{a}{b} \Gamma \left( \dfrac{c}{d}\right) \; ,

where a , b , c a,b,c and d d are positive integers such that gcd ( a , b ) = gcd ( c , d ) = 1 \gcd(a,b)=\gcd(c,d) =1 , find a + b + c + d a+b+c+d .


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

I = x 2 e x 4 d x Since the function is even, = 2 0 x 2 e x 4 d x Let t = x 4 d x = 1 4 t 3 4 d t = 1 2 0 t 1 2 3 4 e t d t = 1 2 0 t 1 2 e t d t = 1 2 Γ ( 3 4 ) \begin{aligned} I & = \int_{-\infty}^\infty x^2 e^{-x^4} dx \quad \quad \small \color{#3D99F6}{\text{Since the function is even,}} \\ & = 2 \int_0^\infty x^2 e^{-x^4} dx \quad \quad \small \color{#3D99F6}{\text{Let }t = x^4 \quad \Rightarrow dx = \frac{1}{4}t^{-\frac{3}{4}} dt} \\ & = \frac{1}{2} \int_0^\infty t^{\frac{1}{2}-\frac{3}{4}} e^{-t} dt \\ & = \frac{1}{2} \int_0^\infty t^{-\frac{1}{2}} e^{-t} dt \\ & = \frac{1}{2} \Gamma \left(\frac{3}{4} \right) \end{aligned}

a + b + c + d = 1 + 2 + 3 + 4 = 10 \Rightarrow a + b + c + d = 1+2+3+4 = \boxed{10}

Vignesh S
Apr 3, 2016

put x 4 = t x^4=t , and that's it the problem is over!!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...