Is there easier way out?

Geometry Level 4

If cos ( θ ) = cos ( α ) cos ( β ) \cos(\theta)=\cos(\alpha)\cos(\beta) and tan ( θ + α 2 ) tan ( θ α 2 ) = f ( β ) \tan(\frac{\theta+\alpha}{2})\tan(\frac{\theta-\alpha}{2})=f(\beta) .

then find f ( π 6 ) f(\frac{\pi}{6})


The answer is 0.0718.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

We have,

t a n ( θ + α 2 ) t a n ( θ α 2 ) = f ( β ) \displaystyle tan\left( \frac{\theta+\alpha}{2}\right)tan\left(\frac{\theta-\alpha}{2}\right)=f(\beta)

Simplifying, we get:

f ( β ) = s i n ( θ + α 2 ) s i n ( θ α 2 ) c o s ( θ + α 2 ) c o s ( θ α 2 ) \displaystyle f(\beta) = \frac{sin\left( \frac{\theta+\alpha}{2}\right)sin\left(\frac{\theta-\alpha}{2}\right)}{cos\left(\frac{\theta+\alpha}{2}\right)cos\left(\frac{\theta-\alpha}{2}\right)}

Multipying and dividing by 2 -2 , we get:

f ( β ) = 2 s i n ( θ + α 2 ) s i n ( θ α 2 ) 2 c o s ( θ + α 2 ) c o s ( θ + α 2 ) \displaystyle f(\beta) = \frac{-2sin\left(\frac{\theta+\alpha}{2}\right)sin\left(\frac{\theta-\alpha}{2}\right)}{-2cos\left(\frac{\theta+\alpha}{2}\right)cos\left(\frac{\theta+\alpha}{2}\right)}

Which is equivalent to,

f ( β ) = c o s θ c o s α ( c o s θ + c o s α ) \displaystyle f(\beta) = \frac{cos\theta - cos\alpha}{-(cos\theta + cos\alpha)}

Using c o s ( θ ) = c o s ( α ) c o s ( β ) cos(\theta)=cos(\alpha)cos(\beta) , we get :

f ( β ) = c o s α ( c o s β 1 ) c o s α ( c o s β + 1 ) = 1 c o s β 1 + c o s β \displaystyle f(\beta) = \frac{cos\alpha(cos\beta -1)}{-cos\alpha(cos\beta +1)} = \frac{1-cos\beta}{1+cos\beta}

Hence,

f ( π 6 ) = 1 3 2 1 + 3 2 = 7 4 3 0.0718 \displaystyle f\left(\frac{\pi}{6}\right) = \frac{1-\frac{\sqrt{3}}{2}}{1+\frac{\sqrt{3}}{2}} = 7 - 4\sqrt{3} \approx \boxed{0.0718}

Chew-Seong Cheong
Sep 23, 2015

Let t 0 = tan θ 2 t_0 = \tan \frac{\theta}{2} , t 1 = tan α 2 t_1 = \tan \frac{\alpha}{2} and t 2 = tan β 2 t_2 = \tan \frac{\beta}{2} . Then, we have:

f ( β ) = tan ( θ + α 2 ) tan ( θ α 2 ) = t 0 + t 1 1 t 0 t 1 ˙ t 0 t 1 1 + t 0 t 1 = t 0 2 t 1 2 1 t 0 2 t 1 2 \begin{aligned} f(\beta) & = \tan \left( \frac{\theta + \alpha}{2} \right) \tan \left( \frac{\theta - \alpha}{2} \right) \\ & = \frac{t_0+t_1}{1-t_0t_1} \dot{} \frac{t_0-t_1}{1+t_0t_1} \\ & = \frac{t_0^2-t_1^2}{1-t_0^2t_1^2} \end{aligned}

cos θ = cos α cos β 1 + t 0 2 1 t 0 2 = 1 + t 1 2 1 t 1 2 ˙ 1 + t 2 2 1 t 2 2 1 + t 2 2 1 t 2 2 = 1 + t 0 2 1 t 0 2 ˙ 1 t 1 2 1 + t 1 2 = 1 + t 0 2 t 1 2 t 0 2 t 1 2 1 t 0 2 + t 1 2 t 0 2 t 1 2 Divide nominator and denominator by 1 t 0 2 t 1 2 = 1 + f ( β ) 1 f ( β ) \begin{aligned} \cos \theta & = \cos{\alpha} \cos{\beta} \\ \frac{1+t_0^2}{1-t_0^2} & = \frac{1+t_1^2}{1-t_1^2} \dot{} \frac{1+t_2^2}{1-t_2^2} \\ \frac{1+\color{#3D99F6}{t_2^2}}{1-\color{#3D99F6}{t_2^2}} & = \frac{1+t_0^2}{1-t_0^2} \dot{} \frac{1-t_1^2}{1+t_1^2} \\ & = \frac{1+t_0^2-t_1^2-t_0^2t_1^2}{1-t_0^2+t_1^2-t_0^2t_1^2} \quad \quad \color{#3D99F6}{\text{Divide nominator and denominator by } 1 - t_0^2t_1^2} \\ & = \frac{1+\color{#3D99F6}{f(\beta)}}{1-\color{#3D99F6}{f(\beta)}} \end{aligned}

f ( β ) = t 2 2 = tan 2 β 2 f ( π 6 ) = tan 2 π 12 = 0.0718 \begin{aligned} \Rightarrow f(\beta) & = t_2^2 = \tan^2 \frac{\beta}{2} \\ \Rightarrow f \left(\frac{\pi}{6} \right) & = \tan^2 \frac{\pi}{12} = \boxed{0.0718} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...