Let a 1 , a 2 , a 3 , . . . a n be real numbers such that
a 1 + a 2 − 1 + a 3 − 2 + . . . + a n − ( n − 1 ) = 2 1 ( a 1 + a 2 + . . . + a n ) − 4 n ( n − 3 )
Then compute the value of i = 1 ∑ 1 0 0 a i .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
The first few i ∈ N appears that a i = i . Assume that it is true then we have:
⎩ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎧ L H S = i = 1 ∑ n a i − ( i − 1 ) = i = 1 ∑ n i − ( i − 1 ) = i = 1 ∑ n 1 = n R H S = 2 1 i = 1 ∑ n a i − 4 n ( n − 3 ) = 2 1 i = 1 ∑ n i − 4 n ( n − 3 ) = 2 1 ( 2 n ( n + 1 ) ) − 4 n ( n − 3 ) = n
Therefore L H S = R H S , implying that the claim a i = i is true. And i = 1 ∑ 1 0 0 a i = i = 1 ∑ 1 0 0 i = 2 1 0 0 ( 1 0 0 + 1 ) = 5 0 5 0 .