Is this a Progression

Algebra Level 3

Let a 1 , a 2 , a 3 , . . . a n { a }_{ 1 },{ a }_{ 2 }, a_3, ... { a }_{ n } be real numbers such that

a 1 + a 2 1 + a 3 2 + . . . + a n ( n 1 ) = 1 2 ( a 1 + a 2 + . . . + a n ) n ( n 3 ) 4 \sqrt { { a }_{ 1 } } +\sqrt { { a }_{ 2 }-{ 1 } } +\sqrt { { a }_{ 3 }-{ 2 } } +...+\sqrt { { a }_{ n }-{ \left( n-1 \right) } } = \frac { 1 }{ 2 } \left( { a }_{ 1 }+{ a }_{ 2 }+...+{ a }_{ n } \right) -\frac { { n }{ \left( n-3 \right) } }{ 4 }

Then compute the value of i = 1 100 a i \displaystyle \sum _{ i=1 }^{ 100 }{ { a }_{ i } } .


The answer is 5050.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Mar 15, 2018

The first few i N i \in \mathbb N appears that a i = i a_i = i . Assume that it is true then we have:

{ L H S = i = 1 n a i ( i 1 ) = i = 1 n i ( i 1 ) = i = 1 n 1 = n R H S = 1 2 i = 1 n a i n ( n 3 ) 4 = 1 2 i = 1 n i n ( n 3 ) 4 = 1 2 ( n ( n + 1 ) 2 ) n ( n 3 ) 4 = n \begin{cases} \displaystyle LHS = \sum_{i=1}^n \sqrt{a_i-(i-1)} = \sum_{i=1}^n \sqrt{i-(i-1)} = \sum_{i=1}^n 1 = n \\ \displaystyle RHS = \frac 12 \sum_{i=1}^n a_i - \frac {n(n-3)}4 = \frac 12 \sum_{i=1}^n i - \frac {n(n-3)}4 = \frac 12\left(\frac {n(n+1)}2\right) - \frac {n(n-3)}4 = n \end{cases}

Therefore L H S = R H S LHS = RHS , implying that the claim a i = i a_i = i is true. And i = 1 100 a i = i = 1 100 i = 100 ( 100 + 1 ) 2 = 5050 \displaystyle \sum_{i=1}^{100} a_i = \sum_{i=1}^{100} i = \frac {100(100+1)}2 = \boxed{5050} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...