Is this a Trigonometry Problem or a Number Theory Problem?

S = a P cos ( 2 π a 1001 ) \large \mathcal{S} = \sum_{a \in \mathcal{P}} \cos \left( 2 \pi \dfrac{a}{1001} \right)

Let us a define a set P \large \mathcal{P} which contains all the natural numbers less than or equal to 1001 and are coprime to 1001.

Evaluate the value of S \mathcal{S} .


The answer is -1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Aareyan Manzoor
Dec 5, 2015

the sum is equal to R e ( a P ( e x p ( 2 π a i 1001 ) ) Re(\sum_{a\in\mathcal{P}} (exp(\dfrac{2\pi ai}{1001})) this is just the sum of all the primitive 1001th roots of unity.1001= 7 11 13 7*11*13 . so μ ( 1001 ) = ( 1 ) 3 = 1 \mu(1001)=(-1)^3=-1 the real part is also 1 \boxed{-1} . here μ ( n ) \mu(n) is the mobius function

Lu Chee Ket
Dec 5, 2015

1001 = 7 × \times 11 × \times 13

Two numbers are coprime if and only if their greatest common divisor is 1.

With Excel:

1
2
3
4
5
A1 = ROW() {Natural number}

B1 = IF(AND(MOD(A1,7)<>0,MOD(A1,11)<>0,MOD(A1,13)<>0),A1,0)

C1 = IF(B1<>0,COS(2*PI()*B1/1001),0)

For A1 to A1001, we sum up C1 to C1001 and found equaled to -1.

Maximum cumulative sum = 114.264457263257 at row 251, row 252 and row 253;

Minimum cumulative sum = -115.269164927167 at row 750.

Answer: 1 \boxed{-1}

k = 0 n 1 e 2 π i k n = 0 = d n 0 k d 1 , gcd ( k , d ) = 1 e 2 π i k d \sum _{ k=0 }^{ n-1 }{ { e }^{ 2\pi i\frac { k }{ n } } } =0=\sum _{ d|n }{ \sum _{ 0\le k\le d-1, \text{ }\gcd(k,d)=1 }{ { e }^{ 2\pi i\frac { k }{ d } } } }

Then you can use mobius inversion to get 0 k n 1 , ( k , n ) = 1 e 2 π i k n = μ ( n ) \sum _{ 0\le k\le n-1,(k,n)=1 }{ { e }^{ 2\pi i\frac { k }{ n } } } =\mu (n)

Julian Poon - 5 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...