Is this Algebra?

Algebra Level 2

Given that x , y , z x,y,z are real numbers such that x 3 + y 3 + z 3 3 x y z = 1 x^3 + y^3 + z^3 - 3xyz = 1 and x y + y z + z x = 0 xy + yz + zx = 0 , find x 2 + y 2 + z 2 x^2 + y^2 + z^2 .


The answer is 1.00.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Nihar Mahajan
Oct 20, 2015

( x + y + z ) ( x 2 + y 2 + z 2 x y y z x z ) = x 3 + y 3 + z 3 3 x y z ( x 2 + y 2 + z 2 + 2 ( x y + y z + x z ) ) ( x 2 + y 2 + z 2 ) = 1 ( x 2 + y 2 + z 2 ) ( x 2 + y 2 + z 2 ) = 1 ( x 2 + y 2 + z 2 ) ( x 2 + y 2 + z 2 ) 2 = 1 ( x 2 + y 2 + z 2 ) 3 = 1 x 2 + y 2 + z 2 = 1 \large \begin{aligned} (x+y+z)(x^2+y^2+z^2-xy-yz-xz) &=x^3+y^3+z^3-3xyz \\ \Rightarrow \left(\sqrt{x^2+y^2+z^2+2(xy+yz+xz)}\right)(x^2+y^2+z^2) &=1 \\ \Rightarrow \left(\sqrt{x^2+y^2+z^2}\right)(x^2+y^2+z^2) &=1 \\ \Rightarrow (x^2+y^2+z^2)(x^2+y^2+z^2)^2 &=1 \\ \Rightarrow (x^2+y^2+z^2)^3 &=1 \\ \Rightarrow x^2+y^2+z^2 &= \boxed{1} \end{aligned}

Moderator note:

Good use of the conditions.

What can we say about the set of solutions to these equations?

there are three cube roots of 1 , two of them are complex roots so they could also be the answer.

Dhaval Panwalkar - 5 years, 7 months ago

Log in to reply

But the question asks for real values of x , y , z x,y,z .

Nihar Mahajan - 5 years, 7 months ago
Alan Yan
Oct 19, 2015

I know this is simple algebra manipulation, but I will present a different solution.

Observe that x y z z x y y z x = x 3 + y 3 + z 3 3 x y z = 1 \begin{vmatrix} x & y & z\\ z & x & y\\ y & z & x \end{vmatrix} = x^3 + y^3 + z^3 - 3xyz = 1

However, this is just the volume of the parallelepiped bounded by the vectors ( x y z ) , ( z x y ) , ( y z x ) \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \begin{pmatrix} z \\ x \\ y \end{pmatrix}, \begin{pmatrix} y \\ z \\ x \end{pmatrix} . Notice that they have equal magnitude. However, since x y + y z + z x = 0 xy + yz + zx = 0 , we know that the pairwise dot product of the three vectors is 0, which implies that this parallelepiped is a cube. Thus, since the side length is x 2 + y 2 + z 2 \sqrt{x^2 + y^2 + z^2} , we can write the volume as ( x 2 + y 2 + z 2 ) 3 2 = 1 x 2 + y 2 + z 2 = 1 (x^2 + y^2 + z^2)^{\frac{3}{2}} = 1 \implies x^2 + y^2 + z^2 = \boxed{1}

There's other solutions as well. x 2 + y 2 + z 2 = 1 2 ± 1 2 i 3 x^2 + y^2 + z^2 = -\frac12 \pm \ \frac12 i\sqrt3 .

Pi Han Goh - 5 years, 7 months ago

Log in to reply

Fixed. /8char

Alan Yan - 5 years, 7 months ago

Ok , I posted the simple algebra manipulation ;)

Nihar Mahajan - 5 years, 7 months ago

Very inspiring solution! <3

展豪 張 - 5 years, 7 months ago
Aareyan Manzoor
Oct 20, 2015

let: s 1 = x + y + z , s 2 = x y + y z + z x = 0 , s 3 = x y z , p n = x n + y n + z n s_1=x+y+z,s_2=xy+yz+zx=0,s_3=xyz,p_n=x^n+y^n+z^n . by newtons sum p 1 = s 1 p 2 = s 1 p 1 2 s 2 = s 1 2 p 3 = s 1 p 2 s 2 p 1 + 3 s 3 p 3 3 s 3 = s 1 ( s 1 2 ) 0 p 1 = s 1 3 \begin{aligned} p_1=s_1\\ p_2=s_1p_1-2s_2=s_1^2\\ p_3=s_1p_2-s_2p_1+3s_3\rightarrow p_3-3s_3=s_1(s_1^2)-0p_1=s_1^3\end{aligned} note the the expression given in question is p 3 3 s 3 = 1 p_3-3s_3=1 : s 1 3 = 1 s 1 = 1 ( u n r e a l n e g l e c t e d ) s_1^3=1\rightarrow s_1 = 1(unreal-neglected) so, p 2 = x 2 + y 2 + z 2 = s 1 2 = 1 p_2=x^2+y^2+z^2=s_1^2=\boxed{1}

i have used the same method.. :)

Ƨarthi Nayak - 5 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...