Is this an identity?

Geometry Level pending

If cos 1 x + cos 1 y = π 2 \cos^{-1} x + \cos^{-1} y = \dfrac \pi 2 , what is the value of x 2 + y 2 x^2+y^2 ?

-1 0 2 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Apr 18, 2018

x 2 + y 2 = cos 2 ( cos 1 x ) + cos 2 ( cos 1 y ) Since cos 1 x + cos 1 y = π 2 = cos 2 ( cos 1 x ) + cos 2 ( π 2 cos 1 x ) = cos 2 ( cos 1 x ) + sin 2 ( cos 1 x ) = 1 \begin{aligned} x^2 + y^2 & = \cos^2 \left(\cos^{-1} x\right) + \cos^2 \left({\color{#3D99F6}\cos^{-1} y}\right) & \small \color{#3D99F6} \text{Since } \cos^{-1} x + \cos^{-1} y = \frac \pi 2 \\ & = \cos^2 \left(\cos^{-1} x\right) + \cos^2 \left({\color{#3D99F6}\frac \pi 2 - \cos^{-1} x}\right) \\ & = \cos^2 \left(\cos^{-1} x\right) + \sin^2 \left(\cos^{-1} x\right) \\ & = \boxed{1} \end{aligned}

It's cos-1(x)+cos-2(y)=pi/2,not cos-1(x)+cos-1(y)=pi/2

X X - 3 years, 1 month ago

Log in to reply

Sorry, I have amended the problem wrongly.

Chew-Seong Cheong - 3 years, 1 month ago

Log in to reply

It's OK now,the problem is now cos-1(y).

X X - 3 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...