Is this an integration?

Calculus Level 4

lim n r = 1 n 6 n 9 n 2 r 2 = ? \large\lim\limits_{n\to\infty} \sum_{r=1}^n \frac{6n}{9n^2-r^2}~=~?

None of these log 2 \log 2 0 0 log ( 2 / 3 ) \log(2/3)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Trishit Chandra
Mar 4, 2015

Highly overrated

Rushikesh Joshi - 6 years, 3 months ago
Chew-Seong Cheong
Feb 23, 2019

S = lim n r = 1 n 6 n 9 n 2 r 2 = lim n r = 1 n 6 n ( 3 n + r ) ( 3 n r ) = lim n r = 1 n ( 1 3 n + r + 1 3 n r ) = lim n 1 n r = 1 n ( 1 3 + r n + 1 3 r n ) Using Riemann sums: = 0 1 ( 1 3 + x + 1 3 x ) d x lim n 1 n k = a b f ( k n ) = lim n a n b n f ( x ) d x = log ( 3 + x ) log ( 3 x ) 0 1 = log ( 3 + x 3 x ) 0 1 = log 2 \begin{aligned} S & = \lim_{n \to \infty} \sum_{r=1}^n \frac {6n}{9n^2-r^2} \\ & = \lim_{n \to \infty} \sum_{r=1}^n \frac {6n}{(3n+r)(3n-r)} \\ & = \lim_{n \to \infty} \sum_{r=1}^n \left(\frac 1{3n+r} + \frac 1{3n-r} \right) \\ & = \lim_{n \to \infty} \frac 1n \sum_{r=1}^n \left(\frac 1{3+\frac rn} + \frac 1{3-\frac rn} \right) & \small \color{#3D99F6} \text{Using Riemann sums:} \\ & = \int_0^1 \left(\frac 1{3+x} + \frac 1{3-x} \right) dx & \small \color{#3D99F6} \lim_{n \to \infty} \frac 1n \sum_{k=a}^b f \left(\frac kn\right) = \lim_{n \to \infty} \int_\frac an^\frac bn f(x) \ dx \\ & = \log (3+x) - \log (3-x) \bigg|_0^1 \\ & = \log \left(\frac {3+x}{3-x} \right) \bigg|_0^1 \\ & = \boxed{\log 2} \end{aligned}


Reference: Riemann sums

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...