Is the answer also imaginary?

Algebra Level 4

If ω \omega is one of the imaginary cube roots of unity,evaluate 1 ω ω 2 ω 3 ω ω 2 ω 3 1 ω 2 ω 3 1 ω ω 3 1 ω ω 2 2 . \left | \begin{array}{cccc} 1 & \omega & \omega^2 & \omega^3 \\ \omega & \omega^2 & \omega^3 & 1 \\ \omega^2 & \omega^3 & 1 & \omega \\ \omega^3 & 1 & \omega & \omega^2 \end{array} \right |^{2}. If the value of above determinant is in the form a + b 1 a+b\sqrt{-1} , find a + b a+b .


The answer is -27.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rishabh Jain
Jan 8, 2016

1 ω ω 2 1 1 ω 2 1 1 1 1 1 ω 1 1 ω ω 2 2 \left | \begin{array}{cccc} 1 & \omega & \omega^2 & 1 \\ 1 & \omega^2 & 1 & 1 \\ 1 & 1 & 1 & \omega \\ 1 & 1 & \omega & \omega^2 \end{array} \right |^{2} U s i n g ω 2 + ω + 1 = 0 , C 1 C 1 + C 2 + C 3 + C 4 Using\space \omega^2+\omega+1=0 \space \color{#D61F06}{, C_1\rightarrow C_1+C_2+C_3+C_4} 1 ω ω 2 1 0 ω ( 1 ω ) ω 2 ( 1 ω ) 0 0 ( 1 ω ) ω 2 ( 1 ω ) ( 1 ω ) 0 ( 1 ω ) ω ( 1 ω ) ω 2 ( 1 ω ) 2 \left | \begin{array}{cccc} 1 & \omega & \omega^2 & 1 \\ 0 & -\omega(1-\omega) & -\omega^2(1-\omega) & 0 \\ 0 & (1-\omega) & -\omega^2(1-\omega) & -(1-\omega) \\ 0 & (1-\omega) & \omega(1-\omega) & \omega^2(1-\omega)\end{array} \right |^{2} R 2 R 2 R 1 , R 3 R 3 R 1 , R 4 R 4 R 1 \color{#D61F06}{R_2 \rightarrow R_2-R_1,R_3\rightarrow R_3-R_1,R_4 \rightarrow R_4-R_1} = ( 1 ω ) 6 1 ω ω 2 1 0 ω ω 2 0 0 1 ω 2 1 0 1 ω ω 2 2 =(1-\omega)^6 \left | \begin{array}{cccc} 1 & \omega & \omega^2 & 1 \\ 0 & -\omega & \omega^2 & 0 \\ 0 & -1 & -\omega^2 & -1 \\ 0 & 1 & \omega & -\omega^2 \end{array} \right |^{2} = ( 1 ω ) 6 = 27 =(1-\omega)^6\color{magenta}{=-27}

Thank you for such a nice solution!

Rohit Udaiwal - 5 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...