Is this diophantine?

{ x y + x + y = 23 x z + x + z = 41 y z + y + z = 27 \large {\begin{cases} xy+x+y=23\\ xz+x+z=41\\ yz+y+z=27 \end{cases}} Find the sum of positive integer solutions for x , y , z x,y,z of the system above.


The answer is 14.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Eamon Gupta
Jul 21, 2015

x y + x + y = 23... ( 1 ) xy +x+y=23...(1) \rightarrow x y + x + y + 1 = 24 xy+x+y+1=24

x z + x + z = 41... ( 2 ) xz +x+z=41...(2) \rightarrow x z + x + z + 1 = 42 xz+x+z+1=42

y z + y + z = 27... ( 3 ) yz +y+z=27...(3) \rightarrow y z + y + z + 1 = 28 yz+y+z+1=28

Now using Simon's favourite Factoring trick we can factorise the equations into:

( x + 1 ) ( y + 1 ) = 24... ( 1 ) (x+1)(y+1)=24...(1)

( x + 1 ) ( z + 1 ) = 42... ( 2 ) (x+1)(z+1)=42...(2)

( y + 1 ) ( z + 1 ) = 28... ( 3 ) (y+1)(z+1)=28...(3)

Now dividing the second equation by the first equation we get:

y + 1 z + 1 = 24 42 = 4 7 \large\frac{y+1}{z+1}=\frac{24}{42}=\frac{4}{7}

By cross-multiplying we get 7 ( y + 1 ) = 4 ( z + 1 ) 7(y+1)=4(z+1) and solving we get z + 1 = 7 ( y + 1 ) 4 z+1=\large\frac{7(y+1)}{4}

Substituting this into Equation 3:

7 ( y + 1 ) 4 ( y + 1 ) = 28 \frac{7(y+1)}{4}\cdot(y+1)=28

Hence ( y + 1 ) 2 = 16 (y+1)^{2}=16

y = 3 \boxed {y=3} (since the question only asks for positive solutions)

Substituting into Equation 1:

4(x+1)=24

x = 5 \boxed{x=5}

Substituting into Equation 3:

4 ( z + 1 ) = 28 4(z+1)=28

z = 6 \boxed{z=6}

Therefore x + y + z = 5 + 3 + 6 = 14 x+y+z=5+3+6=\boxed{14}

Moderator note:

Why can't you multiple ( 1 ) , ( 2 ) , ( 3 ) (1),(2),(3) together?

I did originally find the gcd to ind the values and it worked but it wasn't a foolproof method, so this solution was just an alternative to Rishi Sharma's and was requested by him.

Eamon Gupta - 5 years, 10 months ago
Rishi Sharma
Jul 21, 2015

g i v e n e q u a t i o n s a r e x y + x + y = 23 x z + x + z = 41 y z + y + z = 27 N o w a d d i n g 1 o n b o t h s i d e s 1 + ( x + y ) + x y = 24 1 + ( x + z ) + x z = 42 1 + ( y + z ) + y z = 28 N o w f a c o r i z i n g w e g e t ( 1 + x ) ( 1 + y ) = 24 ( 1 ) ( 1 + x ) ( 1 + z ) = 42 ( 2 ) ( 1 + y ) ( 1 + z ) = 28 ( 3 ) T a k i n g H . C . F o f ( 1 ) & ( 2 ) ( 1 + x ) = 6 ( n o t e t h a t s i n c e x i s p o s i t i v e 1 + x 6 ) s o x = 5 s o y = 3 s u s t i t u t i n g t h i s i n ( 2 ) w e g e t z = 6 ( y o u c a n t a k e H . C . F o f o t h e r e q u a t i o n s a l s o b u t t h e v a l u e s o f x , y , z d o n t s a t i s f y a l l t h e 3 e q u a t i o n s ) S o t h e a n s w e r i s 5 + 3 + 6 = 14 given\quad equations\quad are\\ xy+x+y=23\\ xz+x+z=41\\ yz+y+z=27\\ Now\quad adding\quad 1\quad on\quad both\quad sides\\ 1+(x+y)+xy=24\\ 1+(x+z)+xz=42\\ 1+(y+z)+yz=28\\ Now\quad facorizing\quad we\quad get\\ (1+x)(1+y)=24--(1)\\ (1+x)(1+z)=42--(2)\\ (1+y)(1+z)=28--(3)\\ Taking\quad H.C.F\quad of\quad (1)\& (2)\\ (1+x)=6\quad (note\quad that\quad since\quad x\quad is\quad positive\quad 1+x\neq -6)\\ so\quad x=5\quad so\quad y=3\\ sustituting\quad this\quad in\quad (2)\quad we\quad get\\ z=6\\ (you\quad can\quad take\quad H.C.F\quad of\quad other\quad equations\quad also\\ but\quad the\quad values\quad of\quad x,y,z\quad don't\quad satisfy\quad all\quad the\quad 3\quad equations)\\ So\quad the\quad answer\quad is\quad 5+3+6=14

I don't think that taking the HCF is a foolproof method (though in this case did work) because 1 + x 1 + x could have been equal to 1, 2 or 6, though correct me if there is a proof that HCF will definitely work in this case.
I used substitution after the factoring stage to reach x + 1 y + 1 = 3 2 \frac{x+1}{y+1} = \frac{3}{2}

Eamon Gupta - 5 years, 10 months ago

Log in to reply

yes i know that hcf is not a foolproof . I am also confused that why it worked in this case. I gave this question to find a much better and foolproof solution. Can you post your soultion.

Rishi Sharma - 5 years, 10 months ago

But multiplying ( 1 ) , ( 2 ) , ( 3 ) (1), (2), (3) yields ( x + 1 ) ( y + 1 ) ( z + 1 ) = 168. (x + 1)(y + 1)(z + 1) = 168.

So, how will we calculate the sum of all integral solutions of x , y , z x, y, z ?

It will be so lengthy.

Priyanshu Mishra - 5 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...