Is this even solvable?

Algebra Level 5

Consider the following polynomial:

x 3 + 75 x 251 = 0 x^3 + 75x -251 = 0

If the roots of the polynomial are a a , b b and c c .

Find: 2 251 ( a , b , c ( a + b ) 3 ) \left| \dfrac{2}{251} \cdot \left( \displaystyle \sum_{a, b, c} (a + b)^3 \right) \right|


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Ariel Gershon
Jul 26, 2014

By Vieta's formula, we know that a + b + c = 0 a+b+c=0 . Therefore,

2 251 ( ( a + b ) 3 + ( b + c ) 3 + ( c + a ) 3 ) \left|\frac{2}{251} \left((a+b)^3 + (b+c)^3 + (c+a)^3 \right) \right| = 2 251 ( a 3 b 3 c 3 ) = \left|\frac{2}{251} \left(-a^3 -b^3 -c^3 \right) \right| = 2 251 ( ( 75 a 251 ) + ( 75 b 251 ) + ( 75 c 251 ) ) = \left|\frac{2}{251} \left((75a-251) + (75b-251) + (75c-251) \right) \right| = 2 251 ( 75 ( a + b + c ) 3 251 ) = \left|\frac{2}{251} \left(75(a+b+c) - 3*251 \right) \right| = 2 251 ( 3 251 ) = \left|\frac{2}{251} \left(-3*251 \right) \right| = 6 = \left|-6 \right| = 6 = \boxed{6}

Very nice alternate method! Every other solution (so far) uses that sum of three cubes identity; someone that does not know that identity can still solve the problem simply! :)

Michael Tang - 6 years, 10 months ago

Log in to reply

Exactly. I like this solution than others. Good job !!!

Nishant Sharma - 6 years, 10 months ago

This is nice. Thank You for posting your solution ! :D

Priyansh Sangule - 6 years, 10 months ago
Sujoy Roy
Aug 4, 2014

As, a + b + c = 0 , a b c = 251 a+b+c=0, abc=251 , then a 3 + b 3 + c 3 = 3 a b c a^3+b^3+c^3=3abc .

Now, 2 251 ( a + b ) 3 + ( b + c ) 3 + ( c + a ) 3 |\frac{2}{251}(a+b)^3+(b+c)^3+(c+a)^3|

= 2 251 ( c ) 3 + ( a ) 3 + ( b ) 3 = \frac{2}{251}|(-c)^3+(-a)^3+(-b)^3|

= 2 251 a 3 + b 3 + c 3 = \frac{2}{251}|a^3+b^3+c^3|

= 2 251 3 a b c = \frac{2}{251}3abc

= 6 =6

Jubayer Nirjhor
Jul 24, 2014

By Vieta's formulas, we get the following two equations: a + b + c = 0 , a b c = 251. a+b+c=0, ~~abc=251. Consequences: b + c = a , c + a = b , a + b = c b+c=-a, ~c+a=-b, ~a+b=-c . Now: cyc ( a + b ) 3 = 2 ( a 3 + b 3 + c 3 ) + 3 a b ( a + b ) + 3 b c ( b + c ) + 3 c a ( c + a ) = 2 ( a 3 + b 3 + c 3 ) 9 a b c \begin{aligned} \sum_{\text{cyc}} (a+b)^3 &=2(a^3+b^3+c^3)+3ab(a+b)+3bc(b+c)+3ca(c+a) \\ &=2(a^3+b^3+c^3)-9abc \end{aligned} Also from the trivial result a + b + c = 0 a 3 + b 3 + c 3 = 3 a b c a+b+c=0 ~\implies a^3+b^3+c^3=3abc , we have: cyc ( a + b ) 3 = 2 ( a 3 + b 3 + c 3 ) 9 a b c = 3 a b c = 3 × 251 \sum_{\text{cyc}} (a+b)^3=2(a^3+b^3+c^3)-9abc=-3abc=-3\times 251 Hence our desired answer is: 2 251 ( cyc ( a + b ) 3 ) = 2 251 × ( 3 ) × 251 = 6 = 6 \left|\dfrac{2}{251}\cdot\left(\sum_{\text{cyc}} (a+b)^3\right)\right|=\left|\dfrac{2}{251}\times (-3)\times 251\right|=\left|-6\right|=\boxed{6}

Lu Chee Ket
Oct 20, 2015

a = 2.990187592 0

b = -1.495093796 -9.039132501

c = -1.495093796 9.039132501

Checked that only 1 result for several cyclic orders,

-363.132034703923+677.934937601324i

-26.7359305921814+9.82664521666655E-15i

-363.132034703923-677.934937601324i

-753.000000000027

|-6| = 6

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...