Is this hard?

Algebra Level 1

x 2 ( y z ) 2 ( x + z ) 2 y 2 + y 2 ( x z ) 2 ( x + y ) 2 z 2 + z 2 ( x y ) 2 ( y + z ) 2 x 2 = ? \dfrac{x^2- (y-z)^2}{(x+z)^2- y^2} + \dfrac{y^2- (x-z)^2}{(x+y)^2- z^2} + \dfrac{z^2- (x-y)^2}{(y+z)^2- x^2} = ?


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rishabh Jain
Jan 22, 2016

c y c x 2 ( y z ) 2 ( x + z ) 2 y 2 \displaystyle \sum_{cyc} \frac{x^2- (y-z)^2}{(x+z)^2- y^2} = c y c ( x y + z ) ( x + y z ) ( x y + z ) ( x + y + z ) =\displaystyle \sum_{cyc} \dfrac{\color{#D61F06}{(x-y+z)}(x+y-z)}{\color{#D61F06}{(x-y+z)}(x+y+z)} = c y c x + y z x + y + z =\displaystyle \sum_{cyc} \dfrac{x+y-z}{x+y+z} = 1 \quad~\Large=1

Karthick Shiva
Jan 23, 2016

I just substituted x=1, y=1, z=0 and got the answer. :)

For these values, first term's denominator is turning to 0 !!!

Rishabh Jain - 5 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...