Is this simple ratio and proportion?

For the given circuit above, resistors X X and Y Y have fixed values, and the range of resistance of the variable resistor is 0 to 1000 ohms. If the variable resistor is set at 0 Ω 0\:\Omega , V A = 27 V V_A = 27\: V , and V A = 52 V V_A = 52\: V when it is set to 1000 Ω 1000 \:\Omega . Determine at what resistance (in ohms) must the variable resistor be set such that the output voltage measured between A A and ground is 42 V 42 \: V .


The answer is 400.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Chew-Seong Cheong
Nov 10, 2015

Let the resistances of X X , Y Y and the variable resistor be R x R_x , R y R_y and R R respectively. By voltage division, we have: R y + R R x = V A 72 V A \dfrac{R_y+R}{R_x}= \dfrac{V_A}{72-V_A} ( 72 V A ) ( R y + R ) = V A R x \quad \Rightarrow (72-V_A) (R_y+R) = V_AR_x

{ ( 72 27 ) ( R y + 0 ) = 27 R x 45 R y = 27 R x R y = 0.6 R x ( 72 52 ) ( R y + 1000 ) = 52 R x 20 R y + 20000 = 52 R x 13 R x 5 R y = 5000 13 R x 3 R x = 5000 R x = 500 Ω ( 72 42 ) ( R y + R ) = 42 R x 30 R y + 30 R = 42 R x 30 R = 42 R x 18 R x = 24 ( 500 ) R = 400 Ω \Rightarrow \begin{cases} (72-27)(R_y+0) = 27R_x & \Rightarrow 45R_y = 27R_x \\ & \Rightarrow \color{#3D99F6}{R_y = 0.6R_x} \\ (72-52)(R_y+1000) = 52R_x & \Rightarrow 20R_y + 20000 = 52R_x \\ & \Rightarrow 13R_x - \color{#3D99F6}{5R_y} = 5000 \\ & \Rightarrow 13R_x - \color{#3D99F6}{3R_x} = 5000 \\ & \Rightarrow \color{#D61F06}{R_x = 500} \Omega \\ (72-42)(R_y+R) = 42R_x & \Rightarrow \color{#3D99F6}{30R_y} + 30R = 42R_x \\ & \Rightarrow 30R = 42\color{#D61F06}{R_x} - \color{#3D99F6}{18}\color{#D61F06}{R_x} = 24(\color{#D61F06}{500}) \\ & \Rightarrow R = \boxed{400}\Omega \end{cases}

Arjen Vreugdenhil
Nov 10, 2015

By subtracting the given voltages from 72 V, the algebra becomes a tad easier than in Efren's solution.

Basic equation: 72 V A = 72 R X R X + R Y + R . 72 - V_A = 72\frac{R_X}{R_X+R_Y+R}. Given: 45 = 72 R X R X + R Y 72 R X = 45 ( R X + R Y ) ; 45 = 72\frac{R_X}{R_X+R_Y}\ \ \therefore\ \ \ 72R_X = 45(R_X+R_Y); 20 = 72 R X R X + R Y + 1000 72 R X = 20 ( R X + R Y ) + 20 000. 20 = 72\frac{R_X}{R_X+R_Y+1000}\ \ \therefore\ \ \ 72R_X = 20(R_X+R_Y) + 20\:000. Subtraction shows 25 ( R X + R Y ) = 20 000 R X + R Y = 800. 25(R_X+R_Y) = 20\:000\ \ \ \therefore\ \ \ R_X+R_Y = 800. It is now easy to find R X = 500 , R Y = 300 R_X = 500, R_Y = 300 . For the final answer, solve 30 = 72 R X R X + R Y + R = 72 500 800 + R 72 500 = 30 ( 800 + R ) . 30 = 72\frac{R_X}{R_X+R_Y+R} = 72\frac{500}{800+R}\ \ \ \therefore\ \ \ 72\cdot 500 = 30\cdot (800+R). This results in R = 400 R = \boxed{400} .

Alternative solution:

Since 72 V A 72-V_A is proportional to the current, it is inversely proportional to the total resistance of the circuit. Therefore 180 / ( 72 V A ) 180/(72-V_A) is a linear function of R R . (I have chosen 180 to make nicer numbers; replace it by any constant you like.)

  • If R = 0 R = 0 , then 180 / ( 72 V A ) = 180 / 45 = 4 180/(72-V_A) = 180/45 = 4 .

  • If R = 1000 R = 1000 , then 180 / ( 72 V A ) = 180 / 20 = 9 180/(72-V_A) = 180/20 = 9 .

We see that 180 / ( 72 V A ) = 4 + R / 200. 180/(72-V_A) = 4 + R/200.

Solve 4 + R / 200 = 6 4 + R/200 = 6 , to find R = 400 R = 400 .

Lu Chee Ket
Nov 10, 2015

Initially, it was 45 V : 27 V = 5 R: 3 R;

Later, it was 20 V : 52 V = 5 R : (3 R + 1000) = 5 : 13;

5 R 3 R + 1000 = 5 13 \frac{5 R}{3 R + 1000} = \frac{5}{13}

R is obviously 100 and therefore the two resistors are of 500 Ω \Omega and 300 Ω \Omega respectively;

Then, 30 V : 42 V = 500 : (300 + R') = 5 : 7;

Obviously, R' = 400 Ω \Omega

Answer: 400 Ω \Omega

Efren Medallo
Nov 9, 2015

This problem solely revolves on the principle of voltage divider theorem, from which we can derive equations for determining first the values of X X and Y Y . Let K K be the resistance of the variable resistor.

When K = 0 K=0 ,

Y X + Y = 27 72 = 3 8 \large \frac {Y}{X+Y} = \frac {27}{72} = \frac {3}{8}

when K = 1000 K=1000

Y + 1000 X + Y + 1000 = 52 72 = 13 18 \large \frac {Y+1000}{X+Y+1000} = \frac {52}{72} = \frac {13}{18}

from these equations, we get

{ Y = 3 5 X 13 X 5 Y = 5000 \large \begin{cases} Y = \frac {3}{5}X \\ 13X - 5Y = 5000 \end{cases}

from which we get

X = 500 ; Y = 300 X = 500; \: Y= 300

so from here, we now use these values to determine the desired value of K K .

300 + K 300 + 500 + K = 42 72 \frac { 300+K}{ 300 + 500 + K} = \frac {42}{72}

from which we get K = 400 Ω K = \boxed { 400 \: \Omega } .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...