Geometrically sound

Algebra Level 4

3 17 + 33 1 7 2 + 333 1 7 3 + 3333 1 7 4 + \dfrac{3}{17}+\dfrac{33}{17^2}+\dfrac{333}{17^3}+ \dfrac{3333}{17^{4}}+\cdots

If the value of the series above is in the form m n \dfrac{m}{n} , where m m and n n are coprime positive integers, find m + n m+n .


The answer is 163.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

Mateus Gomes
Jan 20, 2016

P = 3 17 + 33 1 7 2 + 333 1 7 3 + 3333 1 7 4 + ( 1 ) P=\dfrac{3}{17}+\dfrac{33}{17^2}+\dfrac{333}{17^3}+ \dfrac{3333}{17^{4}}+\cdots~~(1) P 17 = 3 1 7 2 + 33 1 7 3 + 333 1 7 4 + 3333 1 7 5 + ( 2 ) \frac{P}{17}=\dfrac{3}{17^2}+\dfrac{33}{17^3}+\dfrac{333}{17^4}+ \dfrac{3333}{17^{5}}+\cdots~~(2) 16 P 17 = 3 17 + 30 1 7 2 + 300 1 7 3 + ( 1 ) ( 2 ) \frac{16P}{17}=\dfrac{3}{17}+\dfrac{30}{17^2}+\dfrac{300}{17^3}+\cdots~~(1)-(2) 16 P 17 = 3 17 1 10 17 = 3 17 7 17 = 3 7 \frac{16P}{17}=\frac{\frac{3}{17}}{1-\frac{10}{17}}=\frac{\frac{3}{17}}{\frac{7}{17}}=\frac{3}{7} P = 51 112 = m n P=\frac{51}{112}=\frac{m}{n} m + n = 163 \Large{\boxed{\color{#3D99F6}{m+n=163}}}

N i c e ( + 1 ) \Large\color{forestgreen}{Nice ~ (+1)}

Rishabh Jain - 5 years, 4 months ago
Chew-Seong Cheong
Jan 21, 2016

Let the sum be S S , then:

S = n = 1 3 k = 0 n 1 0 k 1 7 n = n = 1 3 ( 1 0 n 1 ) 9 ˙ 1 7 n = n = 1 1 0 n 1 3 ˙ 1 7 n = 1 3 ( n = 1 ( 10 17 ) n n = 1 ( 1 17 ) n ) = 1 3 ( 1 1 10 17 1 1 1 17 ) = 1 3 ( 17 7 17 16 ) = 51 112 m + n = 51 + 112 = 163 \begin{aligned} S & = \sum_{n=1}^\infty \frac{3\sum_{k=0}^n 10^k}{17^n} \\ & = \sum_{n=1}^\infty \frac{3(10^n-1)}{9\dot{}17^n} \\ & = \sum_{n=1}^\infty \frac{10^n-1}{3 \dot{} 17^n} \\ & = \frac{1}{3} \left( \sum_{n=1}^\infty \left(\frac{10}{17}\right)^n - \sum_{n=1}^\infty \left(\frac{1}{17}\right)^n \right) \\ & = \frac{1}{3} \left( \frac{1}{1-\frac{10}{17}} - \frac{1}{1-\frac{1}{17}} \right) \\ & = \frac{1}{3} \left( \frac{17}{7} - \frac{17}{16} \right) \\ & = \frac{51}{112} \\ & \\ \Rightarrow m + n & = 51 + 112 = \boxed{163} \end{aligned}

in response to chew seong cheong, your method is not good than gomes

Arun Garg - 5 years, 2 months ago

Log in to reply

I think it is similar just different presentation. I also wanted to show variety of approaches to solving the problem.

Chew-Seong Cheong - 5 years, 2 months ago

Lovely. Did the same way sir

Jun Arro Estrella - 5 years, 4 months ago
Reineir Duran
Jan 21, 2016

Just let

S = 3 17 + 33 1 7 2 + 333 1 7 3 + 3333 1 7 4 + \displaystyle S= \dfrac{3}{17}+\dfrac{33}{17^2}+\dfrac{333}{17^3}+ \dfrac{3333}{17^{4}}+\cdots ( 1 ) (1)

17 S = 3 + 33 17 + 333 1 7 2 + 3333 1 7 3 + \displaystyle \Longrightarrow 17S = 3 +\dfrac{33}{17}+\dfrac{333}{17^2}+ \dfrac{3333}{17^{3}}+\cdots ( 2 ) (2)

Now, ( 2 ) ( 1 ) (2) - (1) gives

16 S = 3 + 30 17 + 300 1 7 2 + 3000 1 7 3 + 16 S = 3 + 30 7 = 51 7 \displaystyle 16S= 3 +\dfrac{30}{17}+\dfrac{300}{17^2}+ \dfrac{3000}{17^{3}}+\cdots \Longleftrightarrow 16S = 3 + \dfrac{30}{7} = \dfrac{51}{7}

Thus, S = 51 112 \displaystyle S = \dfrac{51}{112} and m + n = 51 + 112 = 163 \displaystyle m + n = 51 + 112 = 163 .

Rohit Ner
Jan 21, 2016

Arjen Vreugdenhil
Jan 22, 2016

I split the numerators into 3, 30, 300, and so on. We must find 3 ( 1 17 + 1 1 7 2 + ) + 30 ( 1 1 7 2 + 1 1 7 3 + ) + = ( 3 + 30 1 17 + 300 1 1 7 2 + ) ( 1 17 + 1 1 7 2 + ) = 3 ( 1 + 10 17 + 1 0 2 1 7 2 + ) ( 1 17 + 1 1 7 2 + ) = 3 17 7 1 16 = 3 17 7 16 = 51 112 , 3\cdot\left(\frac1{17} + \frac1{17^2} + \cdots\right) + 30\cdot\left(\frac1{17^2} + \frac1{17^3} + \cdots\right) + \cdots \\ = \left(3 + 30\cdot \frac1{17} + 300\cdot \frac1{17^2} + \cdots\right)\cdot\left(\frac1{17} + \frac1{17^2} + \cdots\right) \\ = 3\cdot \left(1 + \frac{10}{17} + \frac{10^2}{17^2} + \cdots\right)\cdot\left(\frac1{17} + \frac1{17^2} + \cdots\right) \\ = 3\cdot \frac{17}{7}\cdot \frac{1}{16} = \frac{3\cdot 17}{7\cdot 16} = \frac{51}{112}, giving the answer 163 \boxed{163} .

1 0 n 1 = 9999...9 , n 9 s . 3 17 + 33 1 7 2 + 333 1 7 3 . . . 1 3 { 10 17 1 17 + 1 0 2 1 7 2 1 1 7 2 + 1 0 3 1 7 3 1 1 7 3 . . . } = 1 3 { 10 17 + 1 0 2 1 7 2 + 1 0 3 1 7 3 . . . 1 17 1 1 7 2 1 1 7 3 . . . } = 1 3 { 1 1 10 17 1 1 1 17 } = 51 112 = m n . m + n = 163. 10^n - 1 = 9999. . . 9, n ~9s. \\ \therefore \dfrac{3}{17} + \dfrac{33}{17^2} + \dfrac{333}{17^3} . . . \\ \frac 1 3 *\left \{ \dfrac{10}{17} - \dfrac{1}{17} +\dfrac{10^2}{17^2} - \dfrac{1}{17^2} + \dfrac{10^3}{17^3} - \dfrac{1}{17^3} . . . \right \}\\ = \frac 1 3 *\left \{ \dfrac{10}{17} +\dfrac{10^2}{17^2} + \dfrac{10^3}{17^3} . . .~~~~~ - \dfrac{1}{17} - \dfrac{1}{17^2} - \dfrac{1}{17^3} . . .\right \}\\ =\frac 1 3 *\left \{ \dfrac 1 {1 - \frac{10}{17} } ~~ - \dfrac1 {1 - \frac{1}{17} } \right \} \\ =\dfrac {51}{112}=\dfrac {m}{n}. ~~m+n=163.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...