How can this possibly be unique...

Algebra Level 4

{ a + b + c = 2 a 2 + b 2 + c 2 = 4 \large \begin{cases} a+b+c=2 \\ a^2+b^2+c^2=4\end{cases}

Suppose that a , b , a,b, and c c are nonzero numbers that satisfy the system of equations above. Find a b c + a c b + b c a \dfrac{ab}{c}+\dfrac{ac}{b}+\dfrac{bc}{a} .


The answer is -4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

Kenneth Tay
Sep 9, 2014

( a + b + c ) 2 = ( a 2 + b 2 + c 2 ) + 2 ( a b + b c + c a ) , 4 = 4 + 2 ( a b + b c + c a ) , a b + b c + c a = 0. (a+b+c)^2 = (a^2 + b^2 + c^2) + 2(ab + bc + ca), \\ 4 = 4 + 2(ab+bc+ca), \\ ab + bc + ca = 0. Hence, 0 = ( a b + b c + c a ) 2 = a 2 b 2 + b 2 c 2 + c 2 a 2 + 2 a b c ( a + b + c ) , a 2 b 2 + b 2 c 2 + c 2 a 2 = 4 a b c . \begin{aligned} 0 &= (ab + bc + ca)^2 \\ &= a^2b^2 + b^2c^2 + c^2a^2 + 2abc(a+b+c), \\ a^2b^2 + b^2c^2 + c^2a^2 &= -4abc. \end{aligned} And so a b c + a c b + b c a = a 2 b 2 + b 2 c 2 + c 2 a 2 a b c = 4 a b c a b c = 4 . \begin{aligned} \frac{ab}{c} + \frac{ac}{b} + \frac{bc}{a} &= \frac{a^2b^2 + b^2c^2 + c^2a^2}{abc} \\ &= \frac{-4abc}{abc} \\ &= \boxed{-4}. \end{aligned}

did the same way.......................

Divyanshu Vadehra - 6 years, 9 months ago

me too, i did the same way

Susilo Widyatmoko - 6 years, 9 months ago

Did the same way......

Niranjan Khanderia - 6 years, 9 months ago

someone can give me the value of a,b,c?

Mark Lawrence Ureta - 6 years, 8 months ago

Log in to reply

The interesting aspect of this question is there there are infinitely many sets of a , b , c a, b, c which satisfy the conditions in the question, but they must all have the same value.

For example, if a , b , c a, b, c are roots of the equation X 3 2 X 2 + 0 X + T = 0 X^3 - 2X^2 + 0X + T = 0 , for any constant T T , then they will satisfy the 2 given equations.

Calvin Lin Staff - 6 years, 8 months ago

Same method!

Anik Mandal - 6 years, 9 months ago

Log in to reply

Mee too!!!😃😊😃😄😆😁

Yash Singhal - 6 years, 9 months ago

yum tasty solution......heehehe ..... to a tasty problem....... oops sorry I am a kind of food lover ........

by the way I love the way you present it sir

ashutosh mahapatra - 6 years, 8 months ago

i also solved it in same way.

esha aslam - 6 years, 8 months ago
Chew-Seong Cheong
Sep 12, 2014

I did slightly different.

( a + b + c ) 2 = a 2 + b 2 + c 2 + 2 ( a b + b c + c a ) (a+b+c)^2 = a^2+b^2+c^2 + 2(ab+bc+ca)

2 2 = 4 + 2 ( a b + b c + c a ) a b + b c + c a = 0 2^2 = 4 + 2(ab+bc+ca) \quad \Rightarrow ab+bc+ca = 0

a b + b c + c a c = 0 a b c + b + a = 0 \Rightarrow \dfrac {ab+bc+ca}{c} = 0 \quad \Rightarrow \dfrac {ab}{c} + b + a= 0

a b c = ( a + b ) \Rightarrow \dfrac {ab}{c} = -(a+b)

Similarly,

b c a = ( b + c ) \dfrac {bc}{a} = -(b + c) \quad and c a b = ( c + a ) \quad \dfrac {ca}{b} = -(c + a)

a b c + b c a + c a b = 2 ( a + b + c ) = 4 \Rightarrow \dfrac {ab}{c} + \dfrac {bc}{a} + \dfrac {ca}{b} = -2(a+b+c) = \boxed{-4}

Exactly what I did....You simply rock!!!! :D. Three problems in a row that we've been using the same approaches

Jayakumar Krishnan - 6 years, 9 months ago

lebih simpel ini

Gilang Syahya - 6 years, 9 months ago

me too ........... :)

Abhinav Raichur - 6 years, 9 months ago

I did it that way too. :)

Jared Jones - 5 years, 11 months ago

The very same way.

Swapnil Das - 4 years, 7 months ago
Bhanu Prasad
Sep 9, 2014

(a+b+c)^2=2^2; Solve above equation we get, ab+bc+ca=0; THEN again squaring on both sides of the result ab+bc+ca=0 Then solve we get, (ab) ^2 +(bc) ^2 +(ca)^2+2 abc[a+b+c]=0 Then divide on both by any we get, ab/c+ac/b+bc/a=-2(a+b+c)=-2 2=-4

William Isoroku
Feb 18, 2015

Set ( a + b + c ) 2 = a 2 + b 2 + c 2 (a+b+c)^2=a^2+b^2+c^2

Which becomes a 2 + b 2 + c 2 + 2 ( a b + b c + a c ) = a 2 + b 2 + c 2 a^2+b^2+c^2+2(ab+bc+ac)=a^2+b^2+c^2

So a b + b c + a c = 0 ab+bc+ac=0

Separating them out:

a b = a c b c a b c = a b ab=-ac-bc \longrightarrow {\frac{ab}{c}=-a-b}

a c = a b b c a c b = a c ac=-ab-bc \longrightarrow {\frac{ac}{b}=-a-c}

b c = a b a c b c a = b c bc=-ab-ac \longrightarrow{\frac{bc}{a}=-b-c}

Adding up the equations:

a b c + a c b + b c a = 2 a 2 b 2 c = 2 ( a + b + c ) = 4 \frac{ab}{c}+\frac{ac}{b}+\frac{bc}{a}=-2a-2b-2c=-2(a+b+c)=\boxed{-4}

Meher Sashank
Sep 14, 2014

(a+b+c) 2 = a 2 +b 2 + c 2 +2(ab+bc+ca) = 4 as given that implies ab+bc+ca = 0 and again squaring ab+bc+ca we get (ab) 2 +(bc) 2+(ca) 2 +2abc(a+b+c) that implies (ab) 2+(bc) 2+(ca) 2 =-4abc substituting in given (ab/c)+(bc/a)+(ca/b) gives the value -4 {* indicates power}

Rohit Sachdeva
Sep 13, 2014

a+b+c=2

(a+b+c)²=4=a²+b²+c²+2(ab+bc+ac)

Which gives ab+bc+ac=0

Dividing by a, b & c gives

b+(bc/a)+c=0

a+c+(ac/b)=0

(ab/c)+b+a=0

Adding all 3 gives

(ab/c)+(bc/a)+(ac/b) = -2(a+b+c) = -4

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...