Is this Vieta's Formula?

Algebra Level 5

If α \alpha , β \beta , and γ \gamma are roots of x 3 2 x 2 + 6 x 1 = 0 x^3 - 2x^2 + 6x - 1 =0 , find the value of the following expression.

α ( α 2 + α + 1 α 2 α + 1 ) + β ( β 2 + β + 1 β 2 β + 1 ) + γ ( γ 2 + γ + 1 γ 2 γ + 1 ) \alpha \left( \frac{ \alpha ^{2}+ \alpha +1}{ \alpha ^{2}- \alpha +1} \right) + \beta \left( \frac{ \beta ^{2}+ \beta +1}{ \beta ^{2}- \beta +1} \right) + \gamma \left( \frac{ \gamma ^{2}+ \gamma +1}{ \gamma ^{2}- \gamma +1} \right)

5 6 2 7 3 8 4 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

α 2 + α + 1 α 2 α + 1 = α 3 1 ( α 1 ) ( α 2 α + 1 ) \dfrac{α^2+α+1}{α^2-α+1}=\dfrac{α^3-1}{(α-1)(α^2-α+1)} . Since α α is a root of the equation x 3 2 x 2 + 6 x 1 = 0 x^3-2x^2+6x-1=0 , therefore α 3 1 = 2 α ( α 3 ) α^3-1=2α(α-3) and ( α 1 ) ( α 2 α + 1 ) = 4 α (α-1)(α^2-α+1)=-4α . So α α 2 + α + 1 α 2 α + 1 = 3 α α 2 2 α\dfrac{α^2+α+1}{α^2-α+1}=\dfrac{3α-α^2}{2} . Similar for β β and γ \gamma . Therefore the given expression equals 3 ( α + β + γ ) ( α 2 + β 2 + γ 2 ) 2 \dfrac{3(α+β+\gamma) -(α^2+β^2+\gamma^2)}{2} . Now α + β + γ = 2 , α β + β γ + α γ = 6 α+β+\gamma=2, αβ+β\gamma+α\gamma=6 . So, α 2 + β 2 + γ 2 = 8 α^2+β^2+\gamma^2=-8 , and the value of the given expression is 3 × 2 + 8 2 = 7 \dfrac{3\times 2+8}{2}=\boxed 7 . (Here α = 0.17609 , β = 0.91195 + 2.20163 i α=0.17609,β=0.91195+2.20163i and γ = 0.91195 2.20163 i \gamma=0.91195-2.20163i )

Chew-Seong Cheong
Jan 24, 2020

From the given equation:

x 3 2 x 2 + 6 x 1 = 0 x 3 x 2 + 5 x = x 2 x + 1 x ( x 2 x + 1 ) + 4 x = x 2 x + 1 x 2 x + 1 = 4 x 1 x x ( x 2 + x + 1 x 2 x + 1 ) = x ( ( x 2 + x + 1 ) ( 1 x ) 4 x ) = ( x 2 + x + 1 ) ( 1 x ) 4 = 1 x 3 4 \begin{aligned} x^3 - 2x^2 + 6x - 1 & = 0 \\ x^3 - x^2 + 5x & = x^2 - x + 1 \\ x(x^2 - x+1) + 4x & = x^2 - x +1 \\ \implies x^2 - x +1 & = \frac {4x}{1-x} \\ \implies x \left(\frac {x^2+x+1}{x^2 - x+1} \right) & = x \left(\frac {(x^2+x+1)(1-x)}{4x} \right) = \frac {(x^2+x+1)(1-x)}4 = \frac {1-x^3}4 \end{aligned}

Therefore,

S = α ( α 2 + α + 1 α 2 α + 1 ) + β ( β 2 + β + 1 β 2 β + 1 ) + γ ( γ 2 + γ + 1 γ 2 γ + 1 ) = 1 α 3 4 + 1 β 3 4 + 1 γ 3 4 = 3 4 α 3 + β 3 + γ 3 4 = 3 4 ( α + β + γ ) ( ( α + β + γ ) 2 3 ( α β + β γ + γ α ) ) + 3 α β γ 4 By Vieta’s formula = 3 4 2 ( 2 2 3 ( 6 ) ) + 3 ( 1 ) 4 = 3 4 + 25 4 = 7 \begin{aligned} S & = \alpha \left(\frac {\alpha^2+\alpha+1}{\alpha^2 - \alpha+1} \right) + \beta \left(\frac {\beta^2+\beta+1}{\beta^2-\beta+1} \right) + \gamma \left(\frac {\gamma^2+\gamma+1}{\gamma^2-\gamma+1}\right) \\ & = \frac {1-\alpha^3}4 + \frac {1-\beta^3}4 + \frac {1-\gamma^3}4 = \frac 34 - \frac {\alpha^3+\beta^3+\gamma^3}4 \\ & = \frac 34 - \frac {(\alpha+\beta+\gamma)\left((\alpha+\beta+\gamma)^2-3(\alpha\beta+\beta\gamma + \gamma\alpha)\right) + 3\alpha\beta\gamma}4 & \small \blue{\text{By Vieta's formula}} \\ & = \frac 34 - \frac {2\left(2^2-3(6)\right) + 3(1)}4 = \frac 34 + \frac {25}4 = \boxed 7 \end{aligned}


Reference: Vieta's formula

@Saket Raj , it is not a good idea to enter everything in Latex. 1) It is difficult. 2) It is not a standard in Brilliant.org. You should see other problems in the website. 3) It does not look professional because the problem text cannot be automatically adjusted when the users change the webpage size and view size.

Chew-Seong Cheong - 1 year, 4 months ago

Sorry, sir, I will take care of this, but I need your help in solving the problems that I posted today, "a baffling recursion". Please, help me by solving that problem. I have seen you solve many problems, so I believe you will solve that too.

Saket Raj - 1 year ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...