Is this year 2025? I don't think so!

Calculus Level 4

k = 1 2025 1 k = ? \left\lfloor \sum _{ k=1 }^{ 2025 }{ \sqrt { \frac { 1 }{ k } } } \right\rfloor = ?

Bonus : Generalize for k = 1 n 2 1 k \left \lfloor \sum_{k=1}^{n^2} \sqrt{\frac 1k} \right \rfloor , where n n is a positive integer.

Source : This problem comes from this set .


The answer is 88.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

We can estimate the value of S = k = 1 n 2 1 k \displaystyle S = \sum_{k=1}^{n^2} \sqrt{\frac 1k} with I = a b 1 x d x \displaystyle I = \int_a^b \sqrt{\frac 1x} dx with appropriate values of the limits a a and b b . Since the 1 x \dfrac 1{\sqrt x} is convex, we note that the area where the curve is above the column α \alpha is larger than the area where the column is above the curve β \beta . Then we have:

1 2 + 1 n 2 1 x d x + 1 n + 1 2 < k = 1 n 2 1 k < 1 2 n 2 + 1 2 1 x d x 1 2 + 2 x 1 n 2 + 1 n + 1 2 < k = 1 n 2 1 k < 1 2 1 1 x d x + 1 n 2 1 x d x + n 2 n 2 + 1 2 1 x d x Note that n 2 n 2 + 1 2 1 x d x < 1 2 1 n 2 = 1 2 n 1 2 + 2 ( n 2 ) + 1 n + 1 2 < k = 1 n 2 1 k < 2 2 + 2 ( n 1 ) + 1 2 n one half of the last column. 1 2 + 2 ( n 2 ) + 1 n + 1 2 < k = 1 n 2 1 k < 2 2 + 2 ( n 1 ) + 1 2 n Taking the integral part throughout. 2 ( n 1 ) = k = 1 n 2 1 k = 2 ( n 1 ) for n 2 \begin{aligned} \frac 12 + \int_1^{n^2} \frac 1{\sqrt x} dx + \frac 1{\sqrt{n + \frac 12}} & < \sum_{k=1}^{n^2} \sqrt{\frac 1k} < \int_\frac 12^{n^2 + \frac 12} \frac 1{\sqrt x} dx \\ \frac 12 + 2\sqrt x \ \bigg|_1^{n^2} + \frac 1{\sqrt{n + \frac 12}} & < \sum_{k=1}^{n^2} \sqrt{\frac 1k} < \int_\frac 12^1 \frac 1{\sqrt x} dx + \int_1^{n^2} \frac 1{\sqrt x} dx + \color{#3D99F6} \int_{n^2}^{n^2 + \frac 12} \frac 1{\sqrt x} dx & \small \color{#3D99F6} \text{Note that }\int_{n^2}^{n^2 + \frac 12} \frac 1{\sqrt x} dx < \frac 12 \cdot \frac 1{\sqrt{n^2}} = \frac 1{2n} \\ \frac 12 + 2(n-2) + \frac 1{\sqrt{n + \frac 12}} & < \sum_{k=1}^{n^2} \sqrt{\frac 1k} < 2-\sqrt 2 + 2(n-1) + \color{#3D99F6} \frac 1{2n} & \small \color{#3D99F6} \text{one half of the last column.} \\ \left \lfloor \frac 12 + 2(n-2) + \frac 1{\sqrt{n + \frac 12}} \right \rfloor & < \left \lfloor \sum_{k=1}^{n^2} \sqrt{\frac 1k} \right \rfloor < \left \lfloor 2-\sqrt 2 + 2(n-1) + \frac 1{2n} \right \rfloor & \small \color{#3D99F6} \text{Taking the integral part throughout.} \\ \implies 2(n-1) & = \left \lfloor \sum_{k=1}^{n^2} \sqrt{\frac 1k} \right \rfloor = 2(n-1) & \small \color{#3D99F6} \text{for } n \ge 2 \end{aligned}

Therefore k = 1 2025 1 k = 2 ( 2025 1 ) = 88 \displaystyle \left \lfloor \sum_{k=1}^{2025} \sqrt{\frac 1k} \right \rfloor = 2(\sqrt{2025}-1) = \boxed{88} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...