ISI (1)

Algebra Level 3

Let a , b , and c a, b, \text{and} \ c be such that a + b + c = 0 a+b+c = 0 and P = a 2 2 a 2 + b c + b 2 2 b 2 + c a + c 2 2 c 2 + a b P= \frac{a^2}{2a^2+bc} + \frac{b^2}{2b^2+ca}+\frac{c^2}{2c^2+ab} is defined. What is the value of P = ? P=?


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Hana Wehbi
May 10, 2018

Let a + b + c = 0 a+b+c=0 , we need to find the value of P = a 2 2 a 2 + b c + b 2 2 b 2 + c a + c 2 2 c 2 + a b = ? \large P= \frac{a^2}{2a^2+bc} + \frac{b^2}{2b^2+ca}+\frac{c^2}{2c^2+ab}=?

Since a + b + c = 0 a+b+c=0\implies

b = ( a + c ) b= -(a+c) \implies

b c = c ( a + c ) bc=-c(a+c) \implies

2 a 2 + b c = 2 a 2 c ( a + c ) 2a^2+bc=2a^2-c(a+c)

= a 2 + a 2 a c c 2 = =a^2+a^2-ac-c^2=

( a 2 c 2 ) + a ( a c ) = (a^2-c^2)+a(a-c)=

( a c ) ( a + c ) + a ( a c ) = (a-c)(a+c)+a(a-c)=

( a c ) ( 2 a + c ) = ( a c ) ( a b ) . (a-c)(2a+c)=(a-c)(a-b).

a 2 2 a 2 + b c = a 2 ( a b ) ( a c ) . \large\implies\frac{a^2}{2a^2+bc}=\frac{a^2}{(a-b)(a-c)}.

Similarly, we can show that b 2 2 b 2 + a c = b 2 ( b a ) ( b c ) and \large\frac{b^2}{2b^2+ac}=\frac{b^2}{(b-a)(b-c)} \text { and }

c 2 2 c 2 + a b = c 2 ( c a ) ( c b ) . \large\frac{c^2}{2c^2+ab}=\frac{c^2}{(c-a)(c-b)}.

Therefore: P = a 2 2 a 2 + b c + b 2 2 b 2 + c a + c 2 2 c 2 + a b = a 2 ( a b ) ( a c ) + b 2 ( b a ) ( b c ) + c 2 ( c a ) ( c b ) . \large P= \frac{a^2}{2a^2+bc} + \frac{b^2}{2b^2+ca}+\frac{c^2}{2c^2+ab}= \frac{a^2}{(a-b)(a-c)}+ \frac{b^2}{(b-a)(b-c)} +\frac{c^2}{(c-a)(c-b)} .

P = 1 ( a b ) ( a 2 ( a c ) + b 2 ( b c ) ) + c 2 ( c a ) ( c b ) . \large P= \frac{1}{(a-b)}\Big( \frac{a^2}{(a-c)}+\frac{b^2}{(b-c)}\Big)+\frac{c^2}{(c-a)(c-b)}.

P = a b c a c b ( c a ) ( c b ) + c 2 ( c a ) ( c b ) = a b c a c b + c 2 ( c a ) ( c b ) . \large P=\frac{ab-ca-cb}{(c-a)(c-b)} + \frac{c^2}{(c-a)(c-b)}=\frac{ab-ca-cb+c^2}{(c-a)(c-b)}.

P = ( c a ) ( c b ) ( c a ) ( c b ) = 1 \implies \large P= \frac{(c-a)(c-b)}{(c-a)(c-b)}= 1 .

Thanks for a such a nyc soln.What does ISI in ur problem title stand for??

Rahul Gautam - 3 years ago

Log in to reply

You’re welcome. ISI stands for Indian Statistical Institute.

Hana Wehbi - 3 years ago

Log in to reply

oh nice... Indian Statistical institute is known in America too? (just a silly qs)

Md Zuhair - 2 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...