Let a , b , and c be such that a + b + c = 0 and P = 2 a 2 + b c a 2 + 2 b 2 + c a b 2 + 2 c 2 + a b c 2 is defined. What is the value of P = ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Thanks for a such a nyc soln.What does ISI in ur problem title stand for??
Log in to reply
You’re welcome. ISI stands for Indian Statistical Institute.
Log in to reply
oh nice... Indian Statistical institute is known in America too? (just a silly qs)
Problem Loading...
Note Loading...
Set Loading...
Let a + b + c = 0 , we need to find the value of P = 2 a 2 + b c a 2 + 2 b 2 + c a b 2 + 2 c 2 + a b c 2 = ?
Since a + b + c = 0 ⟹
b = − ( a + c ) ⟹
b c = − c ( a + c ) ⟹
2 a 2 + b c = 2 a 2 − c ( a + c )
= a 2 + a 2 − a c − c 2 =
( a 2 − c 2 ) + a ( a − c ) =
( a − c ) ( a + c ) + a ( a − c ) =
( a − c ) ( 2 a + c ) = ( a − c ) ( a − b ) .
⟹ 2 a 2 + b c a 2 = ( a − b ) ( a − c ) a 2 .
Similarly, we can show that 2 b 2 + a c b 2 = ( b − a ) ( b − c ) b 2 and
2 c 2 + a b c 2 = ( c − a ) ( c − b ) c 2 .
Therefore: P = 2 a 2 + b c a 2 + 2 b 2 + c a b 2 + 2 c 2 + a b c 2 = ( a − b ) ( a − c ) a 2 + ( b − a ) ( b − c ) b 2 + ( c − a ) ( c − b ) c 2 .
P = ( a − b ) 1 ( ( a − c ) a 2 + ( b − c ) b 2 ) + ( c − a ) ( c − b ) c 2 .
P = ( c − a ) ( c − b ) a b − c a − c b + ( c − a ) ( c − b ) c 2 = ( c − a ) ( c − b ) a b − c a − c b + c 2 .
⟹ P = ( c − a ) ( c − b ) ( c − a ) ( c − b ) = 1 .